227
Views
9
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Determination of Glucose Using a Platinum–Palladium Nanoparticle Carbon Nanofiber Glassy Carbon Electrode

, , , &
Pages 2741-2754 | Received 19 Nov 2015, Accepted 25 Feb 2016, Published online: 21 Sep 2016

References

  • Banks, C. E., and R. G. Compton. 2005. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study. Analyst 130:1232–39. doi:10.1039/b508702c
  • Bo, X., J. Bai, L. Yang, and L. Guo. 2011. The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. Sensors and Actuators B: Chemical 157:662–68. doi:10.1016/j.snb.2011.05.050
  • Bright, H. J., and M. Appleby. 1969. The pH dependence of the individual steps in the glucose oxidase reaction. Journal of Biological Chemistry 244:3625–34.
  • Calvilloa, L., M. Gangeri, S. Perathoner, G. Centi, R. Moliner, and M. J. Lázaro. 2009. Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers. Journal of Power Sources 192:144–50. doi:10.1016/j.jpowsour.2009.01.005
  • Chen, K. J., K. C. Pillai, J. Rick, C. J. Pan, S. H. Wang, C. C. Liu, and B. J. Hwang. 2012a. Bimetallic PtM (M˭Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosensors and Bioelectronics 33:120–27. doi:10.1016/j.bios.2011.12.037
  • Chen, K. J., C. F. Lee, J. Rick, S. H. Wang, C. C. Liu, and B. J. Hwang. 2012b. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosensors and Bioelectronics 33:75–81. doi:10.1016/j.bios.2011.12.020
  • Chen, X., J. Zhu, R. Tian, and C. Yao. 2012c. Bienzymatic glucose biosensor based on three dimensional macroporous ionic liquid doped sol–gel organic–inorganic composite. Sensors and Actuators B: Chemical 163(1):272–80. doi:10.1016/j.snb.2012.01.053
  • Chu, X., B. Wu, C. Xiao, X. Zhang, and J. Chen. 2010. A new amperometric glucose biosensor based on platinum nanoparticles/polymerized ionic liquid-carbon nanotubes nanocomposites. Electrochimica Acta 55:2848–52. doi:10.1016/j.electacta.2009.12.057
  • Cui, H., S. V. Kalinin, X. Yang, and D. H. Lowndes. 2004. Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Letters 4:2157–61. doi:10.1021/nl048740i
  • Forzani, E. S., H. Q. Zhang, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao. 2004. A conducting polymer nanojunction sensor for glucose detection. Nano Letters 4:1785–88. doi:10.1021/nl049080I
  • Gómez-Cámer, J. L., J. Morales, and L. Sánchez. 2011. Anchoring Si nanoparticles to carbon nanofibers: An efficient procedure for improving Si performance in Li batteries. Journal of Materials Chemistry 21:811–18. doi:10.1039/c0jm01811b
  • Gordijo, C. R., K. Koulajian, A. J. Shuhendler, L. D. Bonifacio, H. Y. Huang, S. Chiang, G. A. Ozin, A. Giacca, and X. Y. Wu. 2011. Nanotechnology-enabled closed loop insulin delivery device: In vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control. Advanced Functional Materials 21:73–82. doi:10.1002/adfm.201001762
  • Hossain, M. F., and J. Y. Park. 2014. Amperometric glucose biosensor based on Pt-Pd nanoparticles supported by reduced graphene oxide and integrated with glucose oxidase. Electroanalysis 26:940–51. doi:10.1002/elan.201400018
  • Hossain, P., B. Kawar, and M. El Nahas. 2007. Obesity and diabetes in the developing world: A growing challenge. New England Journal of Medicine 356:213–15. doi:10.1056/nejmp068177
  • Jayati, D., A. Dutta, and B. Mukul. 2012. Enhancement of functional properties of PtPd Nano catalyst in metal-polymer composite matrix: Application in direct ethanol fuel cell. Electrochemistry Communications 20:56–59. doi:10.1016/j.elecom.2012.02.022
  • Ju, H. 2011. Sensitive biosensing strategy based on functional nanomaterials. Science China Chemistry 54:1202–17. doi:10.1007/s11426-011-4339-2
  • Kim, S. U., and K. H. Lee. 2004. Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chemical Physics Letters 400:253–57. doi:10.1016/j.cplett.2004.10.124
  • Kochubey, D. I., V. V. Chesnokov, and S. E. Malykhin. 2012. Evidence for atomically dispersed Pd in catalysts supported on carbon nanofibers. Carbon 50:2782–87. doi:10.1016/j.carbon.2012.02.040
  • Li, X., S. Park, and B. N. Popov. 2010. Highly stable Pt and PtPd hybrid catalysts supported on a nitrogen-modified carbon composite for fuel cell application. Journal of Power Sources 195:445–52. doi:10.1016/j.jpowsour.2009.07.029
  • Lim, B., M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia. 2009. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–05. doi:10.1126/science.1170377
  • Lin, S. C., J. Y. Chen, Y. F. Hsieh, and P. W. Wu. 2011. A facile route to prepare PdPt alloys for ethanol electro-oxidation in alkaline electrolyte. Materials Letters 65:215–18. doi:10.1016/j.matlet.2010.10.006
  • Liu, Y., M. Chi, V. Mazumder, K. L. More, S. Soled, J. D. Henao, and S. Sun. 2011. Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol. Chemistry of Materials 23:4199–203. doi:10.1021/cm2014785
  • Mani, V., B. Devadas, and S. M. Chen. 2013. Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosensors and Bioelectronics 41:309–15. doi:10.1016/j.bios.2012.08.045
  • Nenkova, R., J. Wu, Y. Zhang, and T. Godjevargova. 2015. Evaluation of immobilization techniques for the fabrication of nanomaterial-based amperometric glucose biosensors. Analytical Letters 48:1297–310. doi:10.1080/00032719.2014.979364
  • Niu, X., C. Chen, H. Zhao, Y. Chai, and M. Lan. 2012. Novel snowflake-like Pt–Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose sensing. Biosensors and Bioelectronics 36:262–66. doi:10.1016/j.bios.2012.03.030
  • Qin, Y., Y. Kong, Y. Xu, F. Chu, Y. Tao, and S. Li. 2012. In situ synthesis of highly loaded and ultrafine Pd nanoparticles-decorated graphene oxide for glucose biosensor application. Journal of Materials Chemistry 22:24821–26. doi:10.1039/c2jm35321k
  • Rahman, M. M., A. J. S. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee. 2010. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–86. doi:10.3390/s100504855
  • Saito, N., K. Aoki, Y. Usui, M. Shimizu, K. Hara, N. Narita, N. Ogihara, K. Nakamura, N. Ishigaki, H. Kato, H. Haniu, S. Taruta, Y. A. Kim, and M. Endo. 2011. Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chemical Society Reviews 40:3824–34. doi:10.1039/c0cs00120a
  • Shao, Y., S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang, and Y. Lin. 2010. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources 195:4600–05. doi:10.1016/j.jpowsour.2010.02.044
  • Si, Y., T. Ren, Y. Li, B. Ding, and J. Yu. 2012. Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 50:5176–85. doi:10.1016/j.carbon.2012.06.059
  • Siddiqui, S., P. U. Arumugam, H. Chen, J. Li, and M. Meyyappan. 2010. Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: Effect of scaling down electrode size. ACS Nano 4:955–61. doi:10.1021/nn901583u
  • Sun, X., S. Guo, Y. Liu, and S. Sun. 2012. Dumbbell-like PtPd−Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Letters 12:4859–63. doi:10.1021/nl302358e
  • Tao, F., M. E. Grass, Y. Zhang, D. R. Butcher, F. Aksoy, S. Aloni, V. Altoe, S. Alayoglu, J. R. Renzas, C. K. Tsung, Z. Zhu, Z. Liu, M. Salmeron, and G. A. Somorjai. 2010. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. Journal of the American Chemical Society 132:8697–703. doi:10.1021/ja101502t
  • Tsai, M. C., and Y. C. Tsai. 2009. Adsorption of glucose oxidase at platinum-multiwalled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor. Sensors and Actuators B: Chemical 141:592–98. doi:10.1016/j.snb.2009.06.016
  • Wang, H., X. Wang, X. Zhang, X. Qin, Z. Zhao, Z. Miao, N. Huang, and Q. Chen. 2009. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosensors and Bioelectronics 25:142–46. doi:10.1016/j.bios.2009.06.022
  • Wang, J. 2008. Electrochemical glucose biosensors. Chemical Reviews 108:814–25. doi:10.1021/cr068123a
  • Wang, L., Y. Ye, H. Zhu, Y. Song, S. He, F. Xu, and H. Hou. 2012. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose bio-sensing. Nanotechnology 23:455502–11. doi:10.1088/0957-4484/23/45/455502
  • Weibel, M. K., and H. J. Bright. 1971. The glucose oxidase mechanism interpretation of the pH dependence. Journal of Biological Chemistry 246:2734–44.
  • Werner, P., R. Verdejo, F. Wöllecke, V. Altstädt, J. K. W. Sandler, and M. S. P. Shaffer. 2005. Carbon nanofibers allow foaming of semicrystalline poly(ether ether ketone). Advanced Materials 17:2864–69. doi:10.1002/adma.200500709
  • Wu, L., X. Zhang, and H. Ju. 2007. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Analytical Chemistry 79:453–58. doi:10.1021/ac061282
  • Xu, C., Y. Liu, F. Su, A. Liu, and H. Qiu. 2011. Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosensors and Bioelectronics 27:160–66. doi:10.1016/j.bios.2011.06.036
  • Xu, X., M. Wang, and L. Wang. 2015. Electrochemical determination of hydrogen peroxide and glucose by titanium (IV) oxide nanotube arrays. Analytical Letters 48:1139–49. doi:10.1080/00032719.2014.999279
  • Zeng, Q., J. S. Cheng, X. F. Liu, H. T. Bai, and J. H. Jiang. 2011. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosensors and Bioelectronics 26:3456–63. doi:10.1016/j.bios.2011.01.024
  • Zhang, H., Y. Yin, Y. Hu, C. Li, P. Wu, S. Wei, and C. Cai. 2010. Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. The Journal of Physical Chemistry C 114:11861–67. doi:10.1021/jp101243k
  • Zhang, J., X. Zhu, H. Dong, X. Zhang, W. Wang, and Z. Chen. 2013. In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymatic sensing of glucose. Electrochimica Acta 105:433–38. doi:10.1016/j.electacta.2013.04.169
  • Zhou, G., K. K. Fung, L. W. Wong, Y. J. Chen, R. Renneberg, and S. Yang. 2011. Immobilization of glucose oxidase on rod-like and vesicle-like mesoporous silica for enhancing current responses of glucose biosensors. Talanta 3:659–65. doi:10.1016/j.talanta.2011.01.058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.