277
Views
12
CrossRef citations to date
0
Altmetric
NANOTECHNOLOGY

Phytosynthesis of Silver Nanoparticles Using Walnut (Juglans regia) Bark with Characterization of the Antibacterial Activity against Streptococcus mutans

, , , &
Pages 690-711 | Received 21 Dec 2015, Accepted 17 May 2016, Published online: 20 Mar 2017

References

  • Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus fusarium oxysporum. Colloids and Surfaces B: Biointerfaces 28:313–18. doi:10.1016/s0927-7765(02)00174-1
  • Alqadi, M. K., O. A. Abo Noqtah, F. Y. Alzoubi, J. Alzouby, and K. Aljarrah. 2014. PH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland 32:107–11. doi:10.2478/s13536-013-0166-9
  • Baharara, J., F. Namvar, T. Ramezani, N. Hosseini, and R. Mohamad. 2014. Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules 19:4624–34. doi:10.3390/molecules19044624
  • Bar, H., D. K. Bhui, G. P. Sahoo, P. Sarkar, S. Pyne, and A. Misra. 2009. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects 348:212–16. doi:10.1016/j.colsurfa.2009.07.021
  • Begum, N. A., S. Mondal, S. Basu, R. A. Laskar, and D. Mandal. 2009. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids and Surfaces B: Biointerfaces 71:113–18. doi:10.1016/j.colsurfb.2009.01.012
  • Bhatia, K., S. Rahman, M. Ali, and S. Raisuddin. 2006. In vitro antioxidant activity of Juglans regia L. bark extract and its protective effect on cyclophosphamide-induced urotoxicity in mice. Redox Report 11:273–79. doi:10.1179/135100006x155030
  • Bulut, E., and M. Ozacar. 2009. Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin. Industrial & Engineering Chemistry Research 48:5686–90. doi:10.1021/ie801779f
  • Daglia, M., A. Papetti, P. Grisoli, C. Aceti, C. Dacarro, and G. Gazzani. 2007. Antibacterial activity of red and white wine against oral streptococci. Journal of Agricultural and Food Chemistry 55:5038–42. doi:10.1021/jf070352q
  • Darroudi, M., M. B. Ahmad, R. Zamiri, A. K. Zak, A. H. Abdullah, and N. A. Ibrahim. 2011. Time-dependent effect in green synthesis of silver nanoparticles. International Journal of Nanomedicine 6:677–81. doi:10.2147/ijn.s17669
  • Desai, R., V. Mankad, S. K. Gupta, and P. K. Jha. 2012. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanoscience and Nanotechnology Letters 4:30–34. doi:10.1166/nnl.2012.1278
  • El-Shishtawy, R. M., A. M. Asiri, and M. M. Al-Otaibi. 2011. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79:1505–10. doi:10.1016/j.saa.2011.05.007
  • Featherstone, J. D. B., R. Glena, M. Shariati, and C. P. Shields. 1990. Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. Journal of Dental Research 69:620–25. doi:10.1177/00220345900690s121
  • Ghadimi, A., R. Saidur, and H. S. C. Metselaar. 2011. A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer 54:4051–68. doi:10.1016/j.ijheatmasstransfer.2011.04.014
  • Guimer, A. N. D. R. E., and G. Fournet. 1955. Small angle scattering of X-rays. New York: J. Wiley and Sons.
  • Hamada, S., T. Horikoshi, T. Minami, N. Okahashi, and T. Koga. 1989. Purification and characterization of cell-associated glucosyltransferase synthesizing water-insoluble glucan from serotype c Streptococcus mutans. Journal of General Microbiology 135:335–44. doi:10.1099/00221287-135-2-335
  • Herrera, M., P. Carrion, P. Baca, J. Liebana, and A. Castillo. 2000. In vitro antibacterial activity of glass-ionomer cements. Microbios 104:141–48.
  • Järvinen, H., J. Tenovuo, and P. Huovinen. 1993. In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrobial Agents Chemotherapy 37:1158–59. doi:10.1128/aac.37.5.1158
  • Kale, A. A., T. V. Gadkari, S. M. Devare, N. R. Deshpande, J. P. Salvekar. 2012. GC–MS study of stem bark extract of Juglans regia L. Res. J. Pharm. Biological Chemistry and Science 3:740–43.
  • Krasse, B. 1988. Biological factors as indicators of future caries. International Dental Journal 38:219–25.
  • Krishnamoorthy, K., M. Veerapandian, K. Yun, and S. J. Kim. 2013. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49. doi:10.1016/j.carbon.2012.10.013
  • Lansdown, A. B. 2002. Silver. I: Its antibacterial properties and mechanism of action. Journal of Wound Care 11:125–30. doi:10.12968/jowc.2002.11.4.26389
  • Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiological Reviews 50:353–80.
  • Makkar, H. P. S. 2003. Quantification of tannins in tree and shrub foliage: A laboratory manual. Nordrecht, The Netherlands: Springer Science and Business Media.
  • Marsh, P. D. 1994. Microbial ecology of dental plaque and its significance in health and disease. Advances in Dental Research 8:263–71.
  • McDonnell, G., and A. D. Russell. 1999. Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews 12:147–79.
  • Mittal, A. K., J. Bhaumik, S. Kumar, and U. C. Banerjee. 2014. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science 415:39–47. doi:10.1016/j.jcis.2013.10.018
  • Mock, J. J., M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 116:6755–59. doi:10.1063/1.1462610
  • Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–53. doi:10.1088/0957-4484/16/10/059
  • Nalina, T., and Z. H. A. Rahim. 2006. Effect of Piper betle L. leaf extract on the virulence activity of Streptococcus mutans-an in vitro study. Pakistan Journal of Biological Sciences 9:1470–75. doi:10.3923/pjbs.2006.1470.1475
  • Oho, T., Y. Yamashita, Y. Shimazaki, M. Kushiyama, and T. Koga. 2000. Simple and rapid detection of Streptococcus mutans and Streptococcus sobrinus in human saliva by polymerase chain reaction. Oral microbiology and immunology 15:258–62. doi:10.1034/j.1399-302x.2000.150408.x
  • Ooshima, T., Y. Osaka, H. Sasaki, K. Osawa, H. Yasuda, M. Matsumura, S. Sobue, and M. Matsumoto. 2000. Caries inhibitory activity of cacao bean husk extract in in-vitro and animal experiments. Archives of Oral Biology 45:639–45. doi:10.1016/s0003-9969(00)00042-x
  • Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology 73:1712–20. doi:10.1128/aem.02218-06
  • Parveen, M., F. Ahmad, A. M. Malla, and S. Azaz. 2015. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay. Applied Nanoscience 6:267–76. doi:10.1007/s13204-015-0433-7
  • Pedersen, J. S. 1994. Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. Journal of Applied Crystallography 27:595–608. doi:10.1107/s0021889893013810
  • Prathna, T. C., N. Chandrasekaran, A. M. Raichur, and A. Mukherjee. 2011. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces 82:152–59. doi:10.1016/j.colsurfb.2010.08.036
  • Raju, D., S. Hazra, and U. J. Mehta. 2013. Phytosynthesis of silver nanoparticles by Semecarpus anacardium L. leaf extract. Materials Letters 102–103:5–7. doi:10.1016/j.matlet.2013.03.091
  • Rani, P. U., and P. Rajasekharreddy. 2011. Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on daphnia magna. Colloids and Surfaces A: Physicochemical and Engineering Aspects 389:188–94. doi:10.1016/j.colsurfa.2011.08.028
  • Raveendran, P., J. Fu, and S. L. Wallen. 2003. Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society 125:13940–41. doi:10.1021/ja029267j
  • Rout, R. W., R. L. Jaya, S. K. Niranjan, D. M. Vijay, and B. K. Sahebrao. 2009. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Current Nanoscience 5:117–22. doi:10.2174/157341309787314674
  • Sahoo, P. K., S. S. K. Kamal, T. J. Kumar, B. Sreedhar, A. K. Singh, and S. K. Srivastava. 2009. Synthesis of silver nanoparticles using facile wet chemical route. Defence Science Journal 59:447–55. doi:10.14429/dsj.59.1545
  • Seralathan, J., P. Stevenson, S. Subramaniam, R. Raghavan, B. Pemaiah, A. Sivasubramanian, and A. Veerappan. 2014. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118:349–55. doi:10.1016/j.saa.2013.08.114
  • Shameli, K., M. B. Ahmad, P. Shabanzadeh, E. A. J. Al-Mulla, A. Zamanian, Y. Abdollahi, S. D. Jazayeri, M. Eili, F. A. Jalilian, and R. Z. Haroun. 2014. Effect of Curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method. Research on Chemical Intermediates 40:1313–25. doi:10.1007/s11164-013-1040-4
  • Shankar, S. S., A. Ahmad, and M. Sastry. 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress 19:1627–31. doi:10.1021/bp034070w
  • Sivaraman, S. K., I. Elango, S. Kumar, and V. Santhanam. 2009. A green protocol for room temperature synthesis of silver nanoparticles in seconds. Current Science 97:1055–59.
  • Stevanović, M., I. Savanović, V. Uskoković, S. D. Škapin, I. Bračko, U. Jovanović, and D. Uskoković. 2012. A new, simple, green, and one-pot four-component synthesis of bare and poly (α, γ, l-glutamic acid)-capped silver nanoparticles. Colloid and Polymer Science 290:221–31. doi:10.1007/s00396-011-2540-7
  • Vanaja, M., G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi, and G. Annadurai. 2013. Phytosynthesis of silver nanoparticles by Cissus quadrangularis: Influence of physicochemical factors. Journal of Nanostructure in Chemistry 3:17. doi:10.1186/2193-8865-3-17
  • Vignesh, V., K. F. Anbarasi, S. Karthikeyeni, G. Sathiyanarayanan, P. Subramanian, and R. Thirumurugan. 2013. A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids and Surfaces A: Physicochemical and Engineering Aspects 439:184–92. doi:10.1016/j.colsurfa.2013.04.011
  • White, R., and K. Cutting. 2006. Exploring the effects of silver in wound management-what is optimal? Wounds 18:307.
  • Wiley, B., Y. Sun, and Y. Xia. 2007. Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research 40:1067–76. doi:10.1021/ar7000974

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.