237
Views
4
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Determination of Dopamine with Ruthenium(III)-Modified Glassy Carbon and Screen-Printed Electrodes

, , &
Pages 1602-1619 | Received 21 Jun 2016, Accepted 23 Sep 2016, Published online: 31 Jul 2017

References

  • Alothman, Z. A., N. Bukhari, S. M. Wabaidura, and S. Haider. 2010. Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sensors and Actuators B: Chemical 146:314–20. doi:10.1016/j.snb.2010.02.024
  • Alwarappan, S., G. Liu, and C. Z. Li. 2010. Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors. Nanomedicine: Nanotechnology, Biology and Medicine 6:52–57. doi:10.1016/j.nano.2009.06.003
  • Aslanoglu, M., S. Abbasoglu, S. Karabulut, and A. Kutluay. 2007. Electrochemical determination of dopamine in the presence of ascorbic acid using a poly(3 acetylthiophene) modified glassy carbon electrode. Acta Chimica Slovenica 54:834–39.
  • Babaei, A., M. Babazadeh, and H. R. Momeni. 2011. A Sensor for simultaneous determination of dopamine and morphine in biological samples using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode. International Journal of Electrochemical Science 6:1382–95.
  • Bard, A. J., and L. R. Faulker. 1980. Electrochemical methods. New York, NY, USA: JohnWiley & Sons.
  • Bari, M. R., and R. E. Sabzi. 2008. Amperometric determination of dopamine on a glassy carbon electrode chemically modified with cobalt pentacyanonitrosylferrate. Asian Journal of Chemistry 20:3357–63.
  • Bezzera, V. S., J. L. Lima Filho, M. Conceic, B. S. M. Montenegro, A. N. Araujo, and V. L. Silva. 2003. Flow-injection amperometric determination of dopamine in pharmaceuticals using a polyphenol oxidase biosensor obtained from soursop pulp. Journal of Pharmaceutical and Biomedical Analysis 33:1025–31. doi:10.1016/S0731-7085(03)00412-6
  • Britto, P. J., K. S. V. Santhanam, and P. M. Ajayan. 1996. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics 41:121–25. doi:10.1016/03024598(96)05078-7
  • Chuekachang, S., V. Kruefu, S. Chaiyasit, and S. Phanichphant. 2010s. Single-wall carbon nanotube modified glassy carbon electrode for electroanalytical determination of dopamine. Proceedings of 2010 5th IEEE International Conference, Xiamen, China, 20–23 January 2010, 133–37.
  • Esnafi, A. A., B. Arashpour, B. Rezaei, and A. R. Allafchian. 2014. Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe2O4 magnetic nano particles decorated with multi wall carbon nanotubes. Materials Science and Engineering: C 39:78–85. doi:10.1016/j.msec.2014.02.024
  • Fan, Y., H. T. Lu, J. H. Liu, C. P. Yang, Q. S. Jing, Y. X. Zhang, X. K. Yang, and K. J. Huang. 2011. Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite. Colloids and Surfaces B: Biointerfaces 88:78–82. doi:10.1016/j.colsurfb.2010.10.048
  • Ferreira, M., L. R. Dineli, K. Wohnrath, A. A. Batisat, and J. O. N. Oliveira. 2004. Langmuir–Blodgett films from polyaniline/ruthenium complexes as modified electrodes for detection of dopamine. Thin Solid Films 446:301–06. doi:10.1016/j.tsf.2003.10.006
  • Fooladsaz, K., M. Negahdary, G. Rahimi, A. Habibi-Tamijani, S. Parsania, H. Akbari-dastjerdi, A. Sayad, A. Jamaleddini, F. Salahi, and A. Asadollah. 2012. Dopamine determination with a biosensor based on catalase and modified carbon paste electrode with zinc oxide nanoparticles. International Journal of Electrochemical Science 7:9892–908.
  • Gal, Y. S., W. C. Lee, W. S. Lyoo, S. H. Jin, K. T. Lim, and J. W. Park. 2008. Electro-optical and electrochemical properties of a conjugated polymer prepared by the cyclopolymerization of diethyl dipropargylmalonate. International Journal of Photoenergy 2008:1–5. doi:10.1155/2008/276027
  • Jackowska, K., and P. Krysinski. 2013. New trends in the electrochemical sensing of dopamine. Analytical and Bioanalytical Chemistry 405:3753–71. doi:10.1007/s00216-012-6578-2
  • Kahrović, E., E. Turkušić, N. Ljubijankić, S. Dehari, D. Dehari, and A. Bajsman. 2012. New ruthenium complexes with Schiff bases as mediators for the low potential amperometric determination of ascorbic acid, part I: voltametric and amperometric evidence of mediation with Tetraethylamonium dichloro-bis[N-phenyl-5-chlorosalicylideniminato-N,O]ruthenat(III). HealthMED 6 (2):699–702.
  • Kahrović, E., A. Zahirović, and E. Turkušić. 2014. Calf thymus DNA intercalation by anionic Ru(III) complexes containing tridentate Schiff bases derived from 5-X-substituted salicylaldehyde and 2-aminophenol. Journal of Chemical & Engineering Data 8:335–43.
  • Kim, Y., Y. Know, K. Lee, J. Park, H. Seo, and T. Kim. 2004. Synthesis and electrochemical properties of n-substituted bicarbazyl derivatives. Molecular Crystals and Liquid Crystals 424:153–58. doi:10.1080/15421400490506090
  • Lai, G. S., H. L. Zhang, and D. Y. Han. 2008a. Electrocatalytic oxidation and voltammetric determination of dopamine at a Nafion-carbon-coated iron nanoparticles-chitosan composite film modified electrode. Microchimica Acta 160:233–39. doi:10.1007/s00604-007-0832-x
  • Lai, G. S., H. L. Zhang, and D. Y. Han. 2008b. Electrocatalytic response of dopamine at an iron nanoparticles-Nafion-modified carbon paste electrode. Analytical Letters 41:3088–99. doi:10.1080/00032710802463022
  • Li, J., Y. Liu, W. Wei, and S. Luo. 2011. Fabrication of tiron doped poly-pyrrole/carbon nanotubes on low resistance monolayer-modified glassy carbon electrode for selective determination of dopamine. Analytical Letters 44 (7):1226–40. doi:10.1080/00032719.2010.511744
  • Liu, S. Q., W. H. Sun, and F. T. Hu. 2012. Graphene nanosheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent. Sensors and Actuators B: Chemical 173:497–504. doi:10.1016/j.snb.2012.07.052
  • Luo, B., X. Li, J. Yang, J. Gu, M. Wang, and L. Jiang. 2014. Copper nanocubes modified glassy carbon electrode for the detection of dopamine. ECS Electrochemistry Letters 3 (3):B5–B7. doi:10.1149/2.001404eel
  • Ma, X., M. Chao, and Z. Wang. 2012. Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Analytical Methods 4:1687. doi:10.1039/C2AY25040C
  • Mani, V., R. Devasenathipathy, S. M. Chen, K. Kohilarani, and R. Ramachandran. 2015. A sensitive amperometric sensor for the determination of dopamine at graphene and bismuth nanocomposite film modified electrode. International Journal of Electrochemical Science 10:1199–207.
  • Martinez-Huitlea, C. A., M. Cerro-Lopezb, and M. A. Quirozb. 2009. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with L-cysteine: Preliminary results. Materials Research 12 (4):375–84.
  • Noroozifar, M., M. Khorasani-Motlagh, R. Akbari, and M. B. Parizi. 2011. Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Biosensors and Bioelectronics 28:56–63. doi:10.1016/j.bios.2011.06.042
  • Peik-See, T., A. Pandikumar, H. Nay-Ming, L. Hong-Ngee, and Y. Sulaiman. 2014. Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors 14:15227–43. doi:10.3390/s140815227
  • Plowman, B. J., M. Mahajan, A. P. O’Mullane, and S. K. Bhargava. 2010. Electrochemical detection of dopamine and cytochrome c at a nanostructured gold electrode. Electrochimica Acta 55:8953–59. doi:10.1016/j.electacta.2010.08.045
  • Quan, D. P., D. P. Tuyen, T. D. Lam, P. T. N. Tram, N. H. Binh, and P. H. Viet. 2011. Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes. Colloids and Surfaces B: Biointerfaces 88:764–70. doi:10.1016/j.colsurfb.2011.08.012
  • Santos, P. M., B. Sandrino, T. F. Moreira, K. Wohnrath, N. Nogata, and C. Pessoa. 2007. Simultaneous voltammetric determination of dopamine and ascorbic acid using multivariate calibration methodology performed on a carbon paste electrode modified by a mer-[RuCl3(dppb)(4-pic)] complex. Journal of the Brazilian Chemical Society 18 (1):93–99. doi:10.1590/S0103-50532007000100010
  • Tsai, T. H., Y. C. Huang, S. M. Chen, M. A. Ali, and F. M. A. Al Hemaid. 2011. Fabrication of multifunctional biosensor for the determination of hydrogen peroxide, dopamine and uric acid. International Journal of Electrochemical Science 6:6456–68.
  • Turkušić, E., and E. Kahrović. 2012. Development of new low potential amperometric sensor for L-cysteine based on carbon ink modification by Tetraethylamonium dichloro-bis[N-phenyl-5-bromosalicylideniminato-N,O]ruthenat(III). TTEM 7 (3):1300–03.
  • Wohnrath, K., C. A. Pessoa, P. M. Santos, J. R. Garcia, A. A. Batista, and O. N. Oliveira. 2005. Electrochemical properties of a ruthenium complex immobilized as thin films and in carbon paste electrodes. Progress in Solid State Chemistry 33:243–52. doi:10.1016/j.progsolidstchem.2005.11.026
  • Yang, Y. J., and W. Li. 2014. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosensors and Bioelectronics 56:300–06. doi:10.1016/j.bios.2014.01.037
  • Yi, S. Y., H. Y. Chang, H. Cho, Y. C. Park, S. H. Lee, and Z. U. Bae. 2007. Resolution of dopamine and ascorbic acid using nickel(II) complex polymer-modified electrodes. Journal of Electroanalytical Chemistry 602:217–25. doi:10.1016/j.jelechem.2007.01.001
  • Zhang, M., and W. Gorski. 2005. Electrochemical sensing based on redox mediation at carbon nanotubes. Analytical Chemistry 77:3960–65. doi:10.1021/ac050059u
  • Zhang, R., G. D. Jin, D. Chen, and X. Y. Hu. 2009. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sensors and Actuators B: Chemical 138:174–81. doi:10.1016/j.snb.2008.12.043
  • Zhao, H., Y. Zhang, and Z. Yuan. 2001. Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode. Analytica Chimica Acta 441:117–22. doi:10.1016/S0003-2670(01)01086-8
  • Zhao, J., Y. Yu, B. Weng, W. Zhang, A. T. Harris, A. I. Minett, Z. Yue, X. Huang, and J. Chen. 2013. Sensitive and selective dopamine determination in human serum with inkjet printed Nafion/MWCNT chips. Electrochemistry Communications 37:32–35. doi:10.1016/j.elecom.2013.10.007
  • Zhou, X., N. Zheng, S. Hou, X. Li, and Z. Yuan. 2010. Selective determination of dopamine in the presence of ascorbic acid at a multi-wall carbon nanotube-poly(3,5-dihydroxy benzoic acid) film modified electrode. Journal of Electroanalytical Chemistry 642:30–34. doi:10.1016/j.jelechem.2010.01.028
  • Zhuang, Z., J. Li, R. Xu, and D. Xiao. 2011. Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. International Journal of Electrochemical Science 6:2149–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.