432
Views
13
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Selective Electrochemical Determination of Salicylic Acid in Wheat Using Molecular Imprinted Polymers

, , , , &
Pages 2369-2385 | Received 05 Dec 2016, Accepted 01 Feb 2017, Published online: 19 Sep 2017

References

  • Balandin, A. A., S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. 2008. Superior thermal conductivity of single-layer grapheme. Nano Letters 8 (3):902–907. doi:10.1021/nl0731872
  • Battezzati, A., G. Fiorillo, A. Spadafranca, S. Bertoli, and G. Testolin. 2006. Measurement of salicylic acid in human serum using stable isotope dilution and gas chromatography–mass spectrometry. Analytical Biochemistry 354 (354):274–78. doi:10.1016/j.ab.2006.05.009
  • Beltran, A., E. Caro, R. M. Marce, P. A. G. Cormack, D. C. Sherrington, and F. Borrull. 2007. Synthesis and application of a carbamazepine-imprinted polymer for solid-phase extraction from urine and wastewater. Analytica Chimica Acta 597 (1):6–11. doi:10.1016/j.aca.2007.06.040
  • Chen, D., H. B. Feng, and J. H. Li. 2012. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 112 (11):6027–53. doi:10.1021/cr300115g
  • Cui, J., R. Zhang, G. L. Wu, H. M. Zhu, and H. Yang. 2010. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Archives of Environmental Contamination and Toxicology 59:100–108. doi:10.1007/s00244-009-9426-4
  • Feng, L., Y. J. Liu, Y. Y. Tan, and J. M. Hu. 2004. Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers. Biosensors and Bioelectronics 19 (11):1513–19. doi:10.1016/j.bios.2003.12.007
  • Geng, H. R., S. S. Miao, S. F. Jin, and H. Yang. 2015. A newly developed molecularly imprinted polymer on the surface of TiO2 for selective extraction of triazine herbicides residues in maize, water, and soil. Analytical and Bioanalytical Chemistry 407 (29):8803–12. doi:10.1007/s00216-015-9039-x
  • Gholivand, M. B., N. Karimian, and G. Malekzadeh. 2012. Computational design and synthesis of a high selective molecularly imprinted polymer for voltammetric sensing of propazine in food samples. Talanta 89 (2):513–20. doi:10.1016/j.talanta.2012.01.001
  • Gu, X. H., R. Xu, G. L. Yuan, H. Lu, B. R. Gu, and H. P. Xie. 2010. Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Analytica Chimica Acta 675 (1):64–70. doi:10.1016/j.aca.2010.06.033
  • Gualandi, I., E. Scavetta, S. Zappoli, and D. Tonelli. 2011. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode. Biosensors and Bioelectronics 26 (7):3200–206. doi:10.1016/j.bios.2010.12.026
  • Hage, D. S. 1999. Affinity chromatography: A review of clinical applications. Clinical Chemistry 45 (5):593–615.
  • Horváth, E., G. Szalai, and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26:290–300. doi:10.1007/s00344-007-9017-4
  • Hu, Y. F., Z. H. Zhang, J. X. Li, H. B. Zhang, L. J. Luo, and S. Z. Yao. 2012. Electrochemical imprinted sensor for determination of oleanic acid based on poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles. Biosensors and Bioelectronics 31 (1):190–96. doi:10.1016/j.bios.2011.10.016
  • Ibrahim, H., A. Boyer, J. Bouajila, F. Couderc, and F. Nepveu. 2007. Determination of non-steroidal anti-inflammatory drugs in pharmaceuticals and human serum by dual-mode gradient HPLC and fluorescence detection. Journal of Chromatography B 857 (1):59–66. doi:10.1016/j.jchromb.2007.07.008
  • Judefeind, A., P. J. V. Rensburg, S. Langelaar, and J. D. Plessis. 2007. Stable isotope dilution analysis of salicylic acid and hydroquinone in human skin samples by gas chromatography with mass spectrometric detection. Journal of Chromatography B 852 (852):300–307. doi:10.1016/j.jchromb.2007.01.031
  • Kang, J. W., H. N. Zhang, Z. H. Wang, G. F. Wu, and X. Q. Lu. 2009. A novel amperometric sensor for salicylic acid based on molecularly imprinted polymer-modified electrodes. Polymer-Plastics Technology and Engineering 48 (6):639–45. doi:10.1080/03602550902824499
  • Karim, M. M., H. S. Lee, Y. S. Kim, H. S. Bae, and S. H. Lee. 2006. Analysis of salicylic acid based on the fluorescence enhancement of the As(III)–salicylic acid system. Analytica Chimica Acta 576 (1):136–39. doi:10.1016/j.aca.2006.02.004
  • Katz, A., and M. E. Davis. 1999. Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules 32 (12):4113–21. doi:10.1021/ma981445z
  • Lee, H., J. León, and I. Raskin. 1995. Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences USA 92 (10):4076–79. doi:10.1073/pnas.92.10.4076
  • Liang, L., Y. L. Lu, and H. Yang. 2012. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environmental Science and Pollution Research 19:2044–54. doi:10.1007/s11356-011-0698-7
  • Liu, C. B., K. Wang, S. L. Luo, Y. H. Tang, and L. Y. Chen. 2011. Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films. Small 7 (9):1203–206. doi:10.1002/smll.201002340
  • Lu, Y. C., S. Zhang, and H. Yang. 2015. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid. Journal of Hazardous Materials 283:806–14. doi:10.1016/j.jhazmat.2014.10.034
  • Lu, Y. C., S. Zhang, S. S. Miao, C. Jiang, M. T. Huang, Y. Liu, and H. Yang. 2015. Enhanced degradation of herbicide isoproturon in wheat rhizosphere by salicylic acid. Journal of Agricultural and Food Chemistry 63 (1):92–103. doi:10.1021/jf505117j
  • Martín, C., and E. Domínguez. 1999. A new enzyme electrode for quantification of salicylic acid in a FIA system. Journal of Pharmaceutical and Biomedical Analysis 19 (1–2):107–13. doi:10.1016/s0731-7085(98)00196-4
  • Miao, S. S., M. S. Wu, L. Y. Ma, X. J. He, and H. Yang. 2016. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt–Au/multi-walled carbon nanotubes modified electrode. Talanta 158:142–51. doi:10.1016/j.talanta.2016.05.030
  • Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science 306 (5696):666–69. doi:10.1126/science.1102896
  • Payán, M. R., M. Á. B. López, R. Fernández-Torres, J. L. P. Bernal, and M. C. Mochón. 2009. HPLC determination of ibuprofen, diclofenac and salicylic acid using hollow fiber-based liquid phase microextraction (HF-LPME). Analytica Chimica Acta 653 (2):184–90. doi:10.1016/j.aca.2009.09.018
  • Peng, H. P., R. P. Liang, and J. D. Qiu. 2011. Facile synthesis of Fe3O4@Al2O3 core–shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry. Biosensors and Bioelectronics 26 (6):3005–3011. doi:10.1016/j.bios.2010.12.003
  • Raskin, I., H. Skubatzt, W. Tang, and B. J. D. Meeuse. 1990. Salicylic acid levels in thermogenic and nonthermogenic plants. Annals of Botany 66 (4):369–73. doi:10.1093/oxfordjournals.aob.a088037
  • Ruiz-Medina, A., M. L. F. Córdova, P. Ortega-Barrales, and A. Molina-Díaz. 2001. Flow-through UV spectrophotometric sensor for determination of (acetyl) salicylic acid in pharmaceutical preparations. International Journal of Pharmaceutics 216 (1–2):95–104. doi:10.1016/s0378-5173(01)00569-5
  • Scotter, M. J., D. P. T. Roberts, L. A. Wilson, F. A. C. Howard, J. Davis, and N. Mansell. 2007. Free salicylic acid and acetyl salicylic acid content of foods using gas chromatography–mass spectrometry. Food Chemistry 105 (1):273–79. doi:10.1016/j.foodchem.2007.03.007
  • Sellergren, B. 2001. Imprinted chiral stationary phases in high-performance liquid chromatography. Journal of Chromatography A 906 (1–2):227–52. doi:10.1016/s0021-9673(00)00929-8
  • Sun, L. J., Q. M. Feng, Y. F. Yan, Z. Q. Pan, X. H. Li, F. M. Song, H. B. Yang, J. J. Xu, N. Bao, and H. Y. Gu. 2014 Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves. Biosensors and Bioelectronics 60:154–60. doi:10.1016/j.bios.2014.04.021
  • Tang, L., D. X. Du, F. Yang, Z. Liang, Y. Ning, H. Wang, and G. J. Zhang. 2015. Preparation of graphene modified acupuncture needle and its application in detecting neurotransmitters. Scientific Reports 5:1–9. doi:10.1038/srep11627
  • Tkac, J., and T. Ruzgas. 2006. Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochemistry Communications 8 (5):899–903. doi:10.1016/j.elecom.2006.03.028
  • Tkac, J., J. W. Whittaker, and T. Ruzgas. 2007. The use of single walled carbon nanotubes dispersed in a matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics 22 (8):1820–24. doi:10.1016/j.bios.2006.08.014
  • Weetall, H. H., and K. R. Rogers. 2004. Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes. Talanta 62 (2):329–35. doi:10.1016/j.talanta.2003.07.014
  • Wu, X. P., X. Zhong, Y. Q. Chai, and R. Yuan. 2014. Electrochemiluminescence acetylcholine biosensor based on biofunctional AMs-AChE-ChO biocomposite and electrodeposited graphene–Au–chitosan nanocomposite. Electrochimica Acta 147:735–42. doi:10.1016/j.electacta.2014.10.016
  • Yang, Y. K., G. Z. Fang, G. Y. Liu, M. F. Pan, X. M. Wang, L. J. Kong, X. L. He, and S. Wang. 2013. Electrochemical sensor based on molecularly imprinted polymer film via sol–gel technology and multi-walled carbon nanotubes-chitosan functional layer for sensitive determination of quinoxaline-2-carboxylic acid. Biosensors and Bioelectronics 47(18):475–81. doi:10.1016/j.bios.2013.03.054
  • Yang, Z. M., J. Wang, S. H. Wang, and L. L. Xu. 2003. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–74.
  • Yang, Y. Q., C. L. Yi, J. Luo, R. Liu, J. K. Liu, J. Q. Jiang, and X. Y. Liu. 2011. Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: A novel strategy for MIP sensors. Biosensors and Bioelectronics 26 (5):2607–12. doi:10.1016/j.bios.2010.11.015
  • Yano, K., and I. Karube. 1999. Molecularly imprinted polymers for biosensor applications. Trends in Analytical Chemistry 18 (98):199–204. doi:10.1016/s0165-9936(98)00119-8
  • Zhang, J., Y. Q. Wang, R. H. Lv, and L. Xu. 2010a. Electrochemical tolazoline sensor based on gold nanoparticles and imprinted poly-o-aminothiophenol film. Electrochimica Acta 55 (12):4039–44. doi:10.1016/j.electacta.2010.02.021
  • Zhang, W. D., B. Xu, Y. X. Hong, Y. X. Yu, J. S. Ye, and J. Q. Zhang. 2010b. Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. Journal of Solid State Electrochemistry 14 (9):1713–18.
  • Zhou, M., Y. M. Zhai, and S. J. Dong. 2009. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry 81 (14):5603–13. doi:10.1021/ac900136z
  • Zhu, Y. C., X. Y. Guan, and H. G. Ji. 2009. Electrochemical solid phase micro-extraction and determination of salicylic acid from blood samples by cyclic voltammetry and differential pulse voltammetry. Journal of Solid State Electrochemistry 13 (9):1417–23. doi:10.1007/s10008-008-0707-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.