265
Views
19
CrossRef citations to date
0
Altmetric
BIOANALYTICAL

Spectrophotometric and Electrochemical Determination of MicroRNA-155 Using Sandwich Hybridization Magnetic Beads

&
Pages 411-423 | Received 30 Dec 2016, Accepted 01 Mar 2017, Published online: 25 Oct 2017

References

  • Ardekani, A. M. and M. M. Naeini. 2010. The role of microRNAs in human diseases. Avicenna journal of medical biotechnology 2:161–179.
  • Azimzadeh, M., M. Rahaie, N. Nasirizadeh, K. Ashtari, and H. Naderi-Manesh. 2016. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors and Bioelectronics 77:99–106. doi:10.1016/j.bios.2015.09.020
  • Catuogno, S., C. L. Esposito, C. Quintavalle, L. Cerchia, G. Condorelli, and V. De Franciscis. 2011. Recent advance in biosensors for microRNAs detection in cancer. Cancers 3:1877–98. doi:10.3390/cancers3021877
  • Chen, X., Y. Ba, L. Ma, X. Cai, Y. Yin, K. Wang, J. Guo, Y. Zhang, J. Chen, X. Guo, Q. Li, X. Li, W. Wang, Y. Zhang, J. Wang, X. Jiang, Y. Xiang, C. Xu, P. Zheng, J. Zhang, R. Li, H. Zhang, X. Shang, T. Gong, G. Ning, J. Wang, K. Zen, J. Zhang, and C. Y. Zhang. 2008. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research 18:997–1006.
  • Cogswell, J. P., J. I. A. Taylor, M. Waters, Y. Shi, B. Cannon, K. Kelnar, J. Kemppainen, D. Brown, C. Chen, R. K. Prinjha, J. C. Richardson, A. M. Saunders, A. D. Roses, and C. A. Richards. 2008. Identification of microRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer’s Disease 14:27–41. doi:10.3233/jad-2008-14103
  • Dean, R. L. 2002. Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations. Biochemistry and Molecular Biology Education 30:401–07. doi:10.1002/bmb.2002.494030060138
  • Dixit, C. K., K. Kadimisetty, B. A. Otieno, C. Tang, S. Malla, C. E. Krause, and J. F. Rusling. 2016. Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst 141:536–47. doi:10.1039/c5an01829c
  • Erdem, A., G. Congura, and E. Eksina. 2013. Multi-channel screen printed array of electrodes for enzyme-linked voltammetric detection of MicroRNAs. Sensors and Actuators B 188:1089–95. doi:10.1016/j.snb.2013.07.114
  • Harapan, H., and M. Andalas. 2015. The role of microRNAs in the proliferation, differentiation, invasion, and apoptosis of trophoblasts during the occurrence of preeclampsia. Tzu Chi Medical Journal 27:54–64. doi:10.1016/j.tcmj.2015.05.001
  • Lahcen, A. A., A. A. Baleg, P. Baker, E. Iwuoha, and A. Amine. 2017. Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17-β-Estradiol determination. Sensors and Actuators B: Chemical 241:698–705. doi:10.1016/j.snb.2016.10.132
  • Lawrie, C. H., S. Gal, H. M. Dunlop, B. Pushkaran, A. P. Liggins, K. Pulford, A. H. Banham, F. Pezzella, J. Boultwood, J. S. Wainscoat, C. S. R. Hatton, and A. L. Harris. 2008. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology 141:672–75.
  • Li, J., P. Lei, S. Ding, Y. Zhang, J. Yang, Q. Cheng, and Y. Yan. 2016. An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosensors and Bioelectronics 77:435–41. doi:10.1016/j.bios.2015.09.069
  • Liu, L., Y. Gao, H. Liu, and N. Xia. 2015. An ultrasensitive electrochemical microRNAs sensor based on microRNAs-initiated cleavage of DNA by duplex-specific nuclease and signal amplification of enzyme plus redox cycling reaction. Sensors and Actuators B: Chemical 208:137–42. doi:10.1016/j.snb.2014.11.023
  • Liu, R., X. Chen, Y. Du, W. Yao, L. Shen, C. Wang, … and Y. Yuan. 2012. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clinical chemistry 58:610–618.
  • Lusi, E., A. M. Passamano, P. Guarascio, A. Scarpa, and L. Schiavo, 2009. Innovative electro-chemical approach for an early detection of microRNAs. Analytical Chemistry 81:2819–22. doi:10.1021/ac8026788
  • Ma, W., B. Situ, W. Lv, B. Li, X. Yin, P. Vadgama, W. Wang, and L. Zheng. 2016. Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic micro-carriers. Biosensors and Bioelectronics 80:344–51. doi:10.1016/j.bios.2015.12.064
  • Miao, X., W. Wang, T. Kang, J. Liu, K. K. Shiu, C. H. Leung, and D. L. Ma. 2016. Ultrasensitive electrochemical detection of microRNA-21 by using an iridium (III) complex as catalyst. Biosensors and Bioelectronics 86:454–58.
  • Mitchell, P. S., R. K. Parkin, E. M. Kroh, B. R. Fritz, S. K. Wyman, E. L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K. C. O’Briant, A. Allen, D. W. Lin, N. Urban, C. W. Drescher, B. S. Knudsen, D. L. Stirewalt, R. Gentleman, R. L. Vessella, P. S. Nelson, D. B. Martin, and M. Tewari, 2008. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of National Academy of Sciences 105:10513–18.
  • Nur, S., Topkaya, M. Azimzadeh, and M. Ozsoz. 2016. Electrochemical biosensors for cancer biomarkers detection: Recent advances and challenges. Electroanalysis 28:1402–19. doi:10.1002/elan.201501174
  • Parra-Cabrera, C., J. Samitier, and A. Homs-Corbera. 2016. Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection. Biosensors and Bioelectronics 77:1192–200. doi:10.1016/j.bios.2015.10.064
  • Patel, A., M. Boufraqech, M. Jain, L. Zhang, M. He, K. Gesuwan, N. Gulati, N. Nilubol, T. Fojo, and E. Kebebew. 2013. MiR-34a and miR-483–5p are candidate serum biomarkers for adrenocortical tumors. Surgery 154:1224–29. doi:10.1016/j.surg.2013.06.022
  • Pezzella, F., J. Boultwood, J. S. Wainscoat, C. S. R. Hatton, and A. L. Harris. 2008. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology 141:672–75. doi:10.1111/j.1365-2141.2008.07077.x
  • Pividori, I. M., and S. Alegret. 2005. Electrochemical genosensing based on rigid carbon composites. A review. Analytical Letters 38:2541–65. doi:10.1080/00032710500369745
  • Sawyers, C. L. 2008. The cancer biomarker problem. Nature 452:548–52. doi:10.1038/nature06913
  • Schipper, H. M., O. C. Maes, H. M. Chertkow, and E. Wang. 2007. MicroRNA expression in Alzheimer blood mononuclear cells. Journal of Gene Regulation and Systems Biology 1:263–81.
  • Stewart, B., and C. P. Wild. 2014. International agency for research on cancer. World Cancer Report 2014. Available from: http://www.thehealthwell.info/node/725845
  • Tombelli, S., M. Minunni, E. Luzi, and M. Mascini. 2004. New trends in nucleic acids based biosensors—Florence. Analytical Letters 37:1037–52. doi:10.1081/al-120034051
  • Topkaya, S. N., M. Azimzadeh, and M. Ozsoz. 2016. Electrochemical biosensors for cancer biomarkers detection: Recent advances and challenges. Electroanalysis 28:1402–19. doi:10.1002/elan.201501174
  • Torrente-Rodríguez, R. M., S. Campuzano, E. López-Hernández, V. R. V. Montiel, R. Barderas, R. Granados, and J. M. Pingarrón. 2015. Simultaneous detection of two breast cancer-related microRNAs in tumor tissues using p19-based disposable amperometric magnetobiosensing platforms. Biosensors and Bioelectronics 66:385–91. doi:10.1016/j.bios.2014.11.047
  • Torrente‐Rodríguez, R. M., S. Campuzano, E. López‐Hernández, R. Granados, J. M. Sánchez‐Puelles, and J. M. Pingarrón. 2014. Direct determination of miR‐21 in total RNA Extracted from breast cancer samples using magnetosensing platforms and the p19 viral protein as detector bioreceptor. Electroanalysis 26:2080–87. doi:10.1002/elan.201400317
  • Wang, L., C. Liu, C. Li, J. Xue, S. Zhao, P. Zhan, Y. Lin, P. Zhang, A. Jiang, and W. Chen, 2015a. Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells. Gene 572:252–58. doi:10.1016/j.gene.2015.07.017
  • Wang, M., B. Shen, R. Yuan, W. Cheng, H. Xu, and S. Ding, 2015b. An electrochemical biosensor for highly sensitive determination of microRNA based on enzymatic and molecular beacon mediated strand displacement amplification. Journal of Electroanalytical Chemistry 756:147–52. doi:10.1016/j.jelechem.2015.08.026
  • Wu, L., and X. Qu. 2015. Cancer biomarker detection: Recent achievements and challenges. Chemical Society Reviews 44:2963–97. doi:10.1039/c4cs00370e
  • Wu, X., Y. Chai, R. Yuan, H. Su, and J. Han. 2013. A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst 138:1060–66. doi:10.1039/c2an36506e
  • Yang, L., Y. L. Wang, S. Liu, P. P. Zhang, Z. Chen, M. Liu, and H. Tang. 2014. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Letters 588:124–30. doi:10.1016/j.febslet.2013.11.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.