143
Views
5
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Amperometric Determination of Ethanol using a Novel Nanobiocomposite

, , , &
Pages 323-335 | Received 10 Jan 2017, Accepted 02 Mar 2017, Published online: 25 Oct 2017

References

  • Alpat, Ş., and A. Telefoncu. 2010. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode. Sensors 10 (1):748–64. doi:10.3390/s100100748
  • Das, P., M. Das, S. R. Chinnadayyala, I. M. Singha, and P. Goswami. 2016. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosensors and Bioelectronics 79:386–97. doi:10.1016/j.bios.2015.12.055
  • Hua, E., L. Wang, X. Jing, C. Chen, and G. Xie. 2013. One-step fabrication of integrated disposable biosensor based on ADH/NAD+/meldola’s blue/graphitized mesoporous carbons/chitosan nanobiocomposite for ethanol detection. Talanta 111:163–69. doi:10.1016/j.talanta.2013.02.064
  • Ijeri, V., L. Cappelletto, S. Bianco, M. Tortello, P. Spinelli, and E. Tresso. 2010. Nafion and carbon nanotube nanocomposites for mixed proton and electron conduction. Journal of Membrane Science 363 (1–2):265–70. doi:10.1016/j.memsci.2010.07.037
  • Jacobson, M. Z. 2007. Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environmental Science and Technology 41 (11):4150–57. doi:10.1021/es062085v
  • Jeong, H., and S. Jeon. 2008. Determination of dopamine in the presence of ascorbic acid by nafion and single-walled carbon nanotube film modified on carbon fiber microelectrode. Sensors 8 (11):6924–35. doi:10.3390/s8116924
  • Lawal, A. T. 2016. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Materials Research Bulletin 73:308–50. doi:10.1016/j.materresbull.2015.08.037
  • Lee, C.-A., and Y.-C. Tsai. 2009. Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sensors and Actuators B: Chemical 138 (2):518–23. doi:10.1016/j.snb.2009.01.001
  • Lian, H., W. Qian, L. Estevez, H. Liu, Y. Liu, T. Jiang, K. Wang, W. Guo, and E. P. Giannelis. 2011. Enhanced actuation in functionalized carbon nanotube-nafion composites. Sensors and Actuators B: Chemical 156 (1):187–93. doi:10.1016/j.snb.2011.04.012
  • Liu, Y.-H., B. Yi, Z.-G. Shao, D. Xing, and H. Zhang. 2006. Carbon nanotubes reinforced nafion composite membrane for fuel cell applications. Electrochemical and Solid-State Letters 9 (7):A356–A59. doi:10.1149/1.2203230
  • Manesh, K. M., P. Santhosh, A. Gopalan, and K. P. Lee. 2008. Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta 75 (5):1307–14. doi:10.1016/j.talanta.2008.01.038
  • O’Connell, M. J., P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley. 2001. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters 342 (3–4):265–71. doi:10.1016/s0009-2614(01)00490-0
  • Rivas, G. A., M. D. Rubianes, M. C. Rodríguez, N. F. Ferreyra, G. L. Luque, M. L. Pedano, S. A. Miscoria, and C. Parrado. 2007. Carbon nanotubes for electrochemical biosensing. Talanta 74 (3):291–307.
  • Santos, A. S., R. S. Freire, and L. T. Kubota. 2003. Highly stable amperometric biosensor for ethanol based on Meldola’s blue adsorbed on silica gel modified with niobium oxide. Journal of Electroanalytical Chemistry 547 (2):135–42. doi:10.1016/s0022-0728(03)00186-4
  • Shan, C., H. Yang, D. Han, Q. Zhang, A. Ivaska, and L. Niu. 2010. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosensors and Bioelectronics 25 (6):1504–08. doi:10.1016/j.bios.2009.11.009
  • Tsai, Y.-C., J.-D. Huang, and C.-C. Chiu. 2007. Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube-alcohol dehydrogenase biocomposite. Biosensors and Bioelectronics 22 (12):3051–56. doi:10.1016/j.bios.2007.01.005
  • Tung, T. T., T. Y. Kim, H. W. Lee, E. Kim, T. H. Lee, and K. S. Suh. 2009. Conducting nanocomposites derived from poly(styrenesulfonate)-functionalized MWCNT-PSS and PEDOT. Journal of the Electrochemical Society 156 (12):K218–K22. doi:10.1149/1.3231486
  • Wang, J., M. Musameh, and Y. Lin. 2003. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society 125 (9):2408–09. doi:10.1021/ja028951v
  • Xu, M., K. A. Bower, S. Wang, J. A. Frank, G. Chen, M. Ding, S. Wang, X. Shi, Z. Ke, and J. Luo. 2010. Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Molecular Cancer 9 (1):1–14. doi:10.1186/1476-4598-9-285
  • Yang, D.-W., and H.-H. Liu. 2009. Poly(brilliant cresyl blue)-carbon nanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Biosensors and Bioelectronics 25 (4):733–38. doi:10.1016/j.bios.2009.08.016
  • Zachut, M., F. Shapiro, and N. Silanikove. 2016. Detecting ethanol and acetaldehyde by simple and ultrasensitive fluorimetric methods in compound foods. Food Chemistry 201:270–74. doi:10.1016/j.foodchem.2016.01.079
  • Zhang, M., and W. Gorski. 2011. Amperometric ethanol biosensors based on chitosan-NAD+ -alcohol dehydrogenase films. Electroanalysis 23 (8):1856–62. doi:10.1002/elan.201100078
  • Zhang, Y., Y. Cai, and S. Su. 2006. Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode. Analytical Biochemistry 350 (2):285–91. doi:10.1016/j.ab.2006.01.002
  • Zhao, J., Y. Yu, B. Weng, W. Zhang, A. T. Harris, A. I. Minett, Z. Yue, X.-F. Huang, and J. Chen. 2013. Sensitive and selective dopamine determination in human serum with inkjet printed nafion/MWCNT chips. Electrochemistry Communications 37:32–35. doi:10.1016/j.elecom.2013.10.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.