385
Views
22
CrossRef citations to date
0
Altmetric
SENSORS

Novel Sensitive Impedimetric Microsensor for Phosphate Detection Based on a Novel Copper Phthalocyanine Derivative

, , , , &
Pages 371-386 | Received 20 Feb 2017, Accepted 19 Apr 2017, Published online: 30 Oct 2017

References

  • Abbas, M. N. 2003a. Diffuse reflectance spectroscopic determination of phosphate with applications of chromaticity coordinates and color temperature. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 19 (9):1303–08. doi:10.2116/analsci.19.1303
  • Abbas, M. N. D. 2003b. Solid phase spectrophotometric determination of traces of arsenate and phosphate in water using polyurethane foam sorbent. Analytical Letters 36 (6):1231–44. doi:10.1081/al-120020155
  • Abbas, M. N., A. A. Saeed, B. Singh, A. A. Radowan, and E. Dempsey. 2015. A cysteine sensor based on a gold nanoparticle–iron phthalocyanine modified graphite paste electrode. Analytical Methods 7 (6):2529–36. doi:10.1039/c4ay02944e
  • Basova, T. V., R. G. Parkhomenko, I. K. Igumenov, A. Hassan, M. Durmuş, A. G. Gürek, and V. Ahsen. 2014. Composites of liquid crystalline nickel phthalocyanine with gold nanoparticles: Liquid crystalline behaviour and optical properties. Dyes and Pigments 111:58–63. doi:10.1016/j.dyepig.2014.05.033
  • Berchmans, S., R. Karthikeyan, S. Gupta, G. E. J. Poinern, T. B. Issa, and P. Singh. 2011. Glassy carbon electrode modified with hybrid films containing inorganic molybdate anions trapped in organic matrices of chitosan and ionic liquid for the amperometric sensing of phosphate at neutral pH. Sensors and Actuators B: Chemical 160 (1):1224–31. doi:10.1016/j.snb.2011.09.052
  • Bourigua, S., M. Hnaien, F. Bessueille, F. Lagarde, S. Dzyadevych, A. Maaref, J. Bausells, A. Errachid, and N. Jaffrezic Renault. 2010. Impedimetric immunosensor based on SWCNT-COOH modified gold microelectrodes for label-free detection of deep venous thrombosis biomarker. Biosensors & Bioelectronics 26 (4):1278–82. doi:10.1016/j.bios.2010.07.004
  • Braik, M., C. Dridi, A. Ali, M. N. Abbas, M. Ben Ali, and A. Errachid. 2015. Development of a perchlorate sensor based on Co-phthalocyanine derivative by impedance spectroscopy measurements. Organic Electronics 16:77–86. doi:10.1016/j.orgel.2014.10.048
  • Carpenter, N. G., A. W. E. Hodgson, and D. Pletcher. 1997. Microelectrode procedures for the determination of silicate and phosphate in waters – Fundamental studies. Electroanalysis 9 (17):1311–17. doi:10.1002/elan.1140091703
  • Cinti, S., D. Talarico, G. Palleschi, D. Moscone, and F. Arduini. 2016. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Analytica Chimica Acta 919:78–84. doi:10.1016/j.aca.2016.03.011
  • Daunert, S., and L. G. Bachas. 1990. Ion-selective electrodes using an ionophore covalently attached to carboxylated poly(vinyl chloride). Analytical Chemistry 62 (14):1428–31. doi:10.1021/ac00213a016
  • El-Ghaffar, M. A. A., N. R. El-Halawany, and H. A. Essawy. 2008. Phthalocyanine/laponite nanocomposites as multifunction additives for stabilization of polymeric materials. Journal of Applied Polymer Science 108 (5):3225–32. doi:10.1002/app.27558
  • Fogg, A. G., and N. K. Bsebsu. 1981. Differential-pulse voltammetric determination of phosphate as molybdovanadophosphate at a glassy carbon electrode and assessment of eluents for the flow injection voltammetric determination of phosphate, silicate, arsenate and germanate. Analyst 106 (1269):1288–95. doi:10.1039/an9810601288
  • Ganjali, M. R., M. Hosseini, Z. Memari, F. Faridbod, P. Norouzi, H. Goldooz, and A. Badiei. 2011. Selective recognition of monohydrogen phosphate by fluorescence enhancement of a new cerium complex. Analytica Chimica Acta 708 (1–2):107–10. doi:10.1016/j.aca.2011.09.032
  • Ganjali, M. R., P. Norouzi, N. Hatambeygi, and M. Salavati-Niasari. 2006. Anion recognition: fabrication of a highly selective and sensitive HPO4(2-) PVC sensor based on a oxo-molybdenum methyl-salen. Journal of the Brazilian Chemical Society 17 (5):859–65. doi:10.1590/s0103-50532006000500007
  • Gilbert, L., A. T. A. Jenkins, S. Browning, and J. P. Hart. 2011. Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sensors and Actuators B: Chemical 160 (1):1322–27. doi:10.1016/j.snb.2011.09.069
  • Guanghan, L., W. Xiaogang, L. Yanhua, and Y. Shenlai. 1999. Studies on 1:12 phosphomolybdic heteropoly anion film modified carbon paste electrode. Talanta 49 (3):511–15. doi:10.1016/s0039-9140(99)00038-7
  • Guilbault, G. G., and M. Nanjo. 1975. A phosphate-selective electrode based on immobilized alkaline phosphatase and glucose oxidase. Analytica Chimica Acta 78 (1):69–80. doi:10.1016/s0003-2670(01)84753-x
  • Harden, S. M., and W. K. Nonidez. 1984. Determination of orthophosphate by flow injection analysis with amperometric detection. Analytical Chemistry 56 (12):2218–23. doi:10.1021/ac00276a053
  • Jońca, J., W. Giraud, C. Barus, M. Comtat, N. Striebig, D. Thouron, and V. Garçon. 2013. Reagentless and silicate interference free electrochemical phosphate determination in seawater. Electrochimica Acta 88:165–69. doi:10.1016/j.electacta.2012.10.012
  • Kahouech, M. S., K. Hriz, S. Touaiti, and J. Bassem. 2016. New anthracene-based-phtalocyanine semi-conducting materials: Synthesis and optoelectronic properties. Materials Research Bulletin 75:144–54. doi:10.1016/j.materresbull.2015.11.010
  • Kawasaki, H., K. Sato, J. Ogawa, Y. Hasegawa, and H. Yuki. 1989. Determination of inorganic phosphate by flow injection method with immobilized enzymes and chemiluminescence detection. Analytical Biochemistry 182 (2):366–70. doi:10.1016/0003-2697(89)90609-x
  • Kivlehan, F., W. J. Mace, H. A. Moynihan, and D. W. M. Arrigan. 2007. Potentiometric evaluation of calix[4]arene anion receptors in membrane electrodes: Phosphate detection. Analytica Chimica Acta 585 (1):154–60. doi:10.1016/j.aca.2006.11.078
  • Kolliopoulos, A. V., D. K. Kampouris, and C. E. Banks. 2015. Rapid and portable electrochemical quantification of phosphorus. Analytical Chemistry 87 (8):4269–74. doi:10.1021/ac504602a
  • Li, J.-Z., X.-C. Wu, R. Yuan, H.-G. Lin, and R.-Q. Yu. 1994. Cobalt phthalocyanine derivatives as neutral carriers for nitrite-sensitive poly(vinyl chloride) membrane electrodes. Analyst 119 (6):1363–66. doi:10.1039/an9941901363
  • Matsunaga, T., T. Suzuki, and R. Tomoda. 1984. Photomicrobial sensors for selective determination of phosphate. Enzyme and Microbial Technology 6 (8):355–58. doi:10.1016/0141-0229(84)90048-6
  • Meenakshi, S., K. Pandian, L. S. Jayakumari, and S. Inbasekaran. 2016. Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin-film modified glassy carbon electrode. Materials Science and Engineering: C 59:136–44. doi:10.1016/j.msec.2015.08.063
  • Menzel, C., T. Lerch, T. Scheper, and K. Schügerl. 1995. Development of biosensors based on an electrolyte isolator semiconductor (EIS) capacitor structure and their application for process monitoring. Part I. Development of the biosensors and their characterization. Analytica Chimica Acta 317 (1):259–64. doi:10.1016/0003-2670(95)00419-x
  • Mourzina, Y., Y. Vlasov, T. Yoshinobu, Y. Ermolenko, H. Iwasaki, T. Mai, A. Poghossian, and M. J. Schöning. 2003. K+-selective field-effect sensors as transducers for bioelectronic applications, PreJuSER-31197, 3333–39. Institut für Bio-und Chemosensoren.
  • O’Neil, J. M., T. W. Davis, M. A. Burford, and C. J. Gobler. 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14:313–34. doi:10.1016/j.hal.2011.10.027
  • Rossignol, J., G. Barochi, B. de Fonseca, J. Brunet, M. Bouvet, A. Pauly, and L. Markey. 2013. Microwave-based gas sensor with phthalocyanine film at room temperature. Sensors and Actuators B: Chemical 189:213–16. doi:10.1016/j.snb.2013.03.092
  • Saeed, A. A., B. Singh, M. N. Abbas, Y. M. Issa, and E. Dempsey. 2015. Electrocatalytic nitrite determination using iron phthalocyanine modified gold nanoparticles. Electroanalysis. 27(5):1086–96. doi:10.1002/elan.201400563
  • Shahrokhian, S. 2001. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Analytical Chemistry 73 (24):5972–78. doi:10.1021/ac010541m
  • Shahrokhian, S., M. Ghalkhani, and M. K. Amini. 2009. Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sensors and Actuators B: Chemical 137 (2):669–75. doi:10.1016/j.snb.2009.01.022
  • Shkinev, V. M., B. Y. Spivakov, G. A. Vorob’eva, and Y. A. Zolotov. 1985. Dialkyltin salts as extractants in methods for the determination of arsenic and phosphorus. Analytica Chimica Acta 167:145–60. doi:10.1016/s0003-2670(00)84417-7
  • Smith, V. H., S. B. Joye, and R. W. Howarth. 2006. Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography 51 (1part2):351–55. doi:10.4319/lo.2006.51.1_part_2.0351
  • Smith, V. H., and D. W. Schindler. 2009. Eutrophication science: Where do we go from here? Trends in Ecology & Evolution 24 (4):201–07. doi:10.1016/j.tree.2008.11.009
  • Talarico, D., S. Cinti, F. Arduini, A. Amine, D. Moscone, and G. Palleschi. 2015. Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system. Environmental Science & Technology 49 (13):7934–39. doi:10.1021/acs.est.5b00218
  • Tlili, C., N. Jaffrezic-Renault, C. Martelet, and H. Korri-Youssoufi. 2008a. Direct electrochemical probing of DNA hybridization on oligonucleotide-functionalized polypyrrole. Materials Science and Engineering: C 28 (5–6):848–54. doi:10.1016/j.msec.2007.10.061
  • Tlili, C., N. Jaffrezic-Renault, C. Martelet, J. P. Mahy, S. Lecomte, M. M. Chehimi, and H. Korri-Youssoufi. 2008b. A new method of immobilization of proteins on activated ester terminated alkanethiol monolayers towards the label free impedancemetric detection. Materials Science and Engineering: C 28 (5–6):861–68. doi:10.1016/j.msec.2007.10.082
  • Tokuda, K., T. Gueshi, and H. Matsuda. 1979. Voltammetry at partially covered electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 102 (1):41–48. doi:10.1016/s0022-0728(79)80027-3
  • Torrezani, L., A. A. Saczk, M. FirminodeOliveira, N. R. Stradiotto, and L. L. Okumura. 2011. Voltammetric determination of phosphate in Brazilian biodiesel using two different electrodes. Electroanalysis 23 (10):2456–61. doi:10.1002/elan.201100333
  • Yuen, A. P., S. M. Jovanovic, A.-M. Hor, R. A. Klenkler, G. A. Devenyi, R. O. Loutfy, and J. S. Preston. 2012. Photovoltaic properties of M-phthalocyanine/fullerene organic solar cells. Solar Energy 86 (6):1683–88. doi:10.1016/j.solener.2012.03.019
  • Zhang, X.-F., Y. Lin, W. Guo, and J. Zhu. 2014. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: Fluorescence properties, triplet state and singlet oxygen generation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133:752–58. doi:10.1016/j.saa.2014.06.063
  • Zhao, X., X.-Q. Yan, Q. Ma, J. Yao, X.-L. Zhang, Z.-B. Liu, and J.-G. Tian. 2013. Nonlinear optical and optical limiting properties of graphene hybrids covalently functionalized by phthalocyanine. Chemical Physics Letters 577:62–67. doi:10.1016/j.cplett.2013.04.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.