138
Views
2
CrossRef citations to date
0
Altmetric
ENVIRONMENTAL ANALYSIS

Monolith Passive Adsorbers Prepared with Hydrophobic Porous Silica Rods Coated with Hydrogel

, , ORCID Icon, , , ORCID Icon & show all
Pages 935-954 | Received 18 May 2017, Accepted 06 Aug 2017, Published online: 19 Dec 2017

References

  • Amati, D., and E. S. Kovats. 1987. Nitrogen adsorption isotherms on organic and ionic model surfaces. Langmuir 3:687–95. doi:10.1021/la00077a019
  • Anuar, S. T., Y. Y. Zhao, S. M. Mugo, and J. M. Curtis. 2013. The development of a capillary microreactor for transesterification reactions using lipase immobilized onto a silica monolith. J. Mol. Catal. B: Enzym. 92:62–70. doi:10.1016/j.molcatb.2013.03.013
  • Awual, M. R. 2015. A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 266:368–75. doi:10.1016/j.cej.2014.12.094
  • Awual, M. R. 2016a. Assessing of lead (III) capturing from contaminated wastewater using ligand doped conjugate adsorbent. Chem. Eng. J. 289:65–73. doi:10.1016/j.cej.2015.12.078
  • Awual, M. R. 2016b. Solid phase sensitive palladium (II) ions detection and recovery using ligand based efficient conjugate nanomaterials. Chem. Eng. J. 300:264–72. doi:10.1016/j.cej.2016.04.071
  • Awual, M. R. 2016c. Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chem. Eng. J. 303:539–46. doi:10.1016/j.cej.2016.06.040
  • Awual, M. R. 2017. Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem. Eng. J. 307:456–65. doi:10.1016/j.cej.2016.08.108
  • Barrett, E. P., L. G. Joyner, and P. P. Halenda. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73 (1):373–80. doi:10.1021/ja01145a126
  • Boksányi, L., O. Liardon, and E. Kováts. 1976. Chemically modified silicon dioxide surfaces Reaction of n-alkyldimethylsilanols and n-oxaalkyldimethylsilanols with the hydrated surface of silicon dioxide — the question of the limiting surface concentration. Adv. Colloid Interface Sci. 6 (2):95–137. doi:10.1016/0001-8686(76)85001-4
  • Cao, G., and R. Orrù. 2014. Current environmental issues and challenges. Dordrecht, Heidelberg, New York, London: Springer Science & Business.
  • Carr, P. W., J. W. Dolan, J. G. Dorsey, L. R. Snyder, and J. J. Kirkland. 2015. Contributions to reversed-phase column selectivity. J. Chromatogr. A 1395:57–64. doi:10.1016/j.chroma.2015.03.044
  • Dugas, V., and Y. Chevalier. 2003. Surface hydroxylation and silane grafting on fumed and thermal silica. J. Colloid Interface Sci. 264 (2):354–61. doi:10.1016/S0021-9797(03)00552-6
  • Ekblad, T., G. Bergström, T. Ederth, S. L. Conlan, R. Mutton, A. S. Clare, and S. Wang. 2008. Poly(Ethylene Glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules 9 (10):2775–83. doi:10.1021/bm8005477mm
  • El-Debs, R., V. Dugas, and C. Demesmay. 2013. Photografting as a versatile, localizable, and single-step surface functionalization of silica-based monoliths dedicated to microscale separation techniques: Liquid chromatography. J. Sep. Sci. 36 (6):993–1001. doi:10.1002/jssc.201200878
  • Flemming, H.-C., G. Schaule, T. Griebe, J. Schmitt, and A. Tamachkiarowa. 1997. Biofouling—the achilles heel of membrane processes. Desalination 113 (2–3):215–25. doi:10.1016/S0011-9164(97)00132-X
  • González-San Miguel, H. M., M. Fernández, J. M. Estela, and V. Cerdà. 2009. Contribution of multi-commuted flow analysis combined with monolithic columns to low-pressure, high-performance chromatography. TrAC, Trends Anal. Chem. 28 (3):336–46. doi:10.1016/j.trac.2008.11.014
  • Kalfat, R., F. Babonneau, N. Gharbi, and H. Zarrouk. 1996. 29Si MAS NMR investigation of the pyrolysis process of cross-linked polysiloxanes prepared from polymethylhydrosiloxane. J. Mater. Chem. 6 (10):1673. doi:10.1039/jm9960601673
  • Kanamori, K., H. Yonezawa, K. Nakanishi, K. Hirao, and H. Jinnai. 2004. Structural formation of hybrid siloxane-based polymer monolith in confined spaces. J. Sep. Sci. 27 (10–11):874–86. doi:10.1002/jssc.200401816
  • Karim, A. H., A. A. Jalil, S. Triwahyono, S. M. Sidik, N. H. N. Kamarudin, R. Jusoh, N. W. C. Jusoh, and B. H. Hameed. 2012. Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. J. Colloid Interface Sci. 386 (1):307–14. doi:10.1016/j.jcis.2012.07.043
  • Kheirandish, S., and E. Jabbari. 2006. Effect of surface polarity on wettability and friction coefficient of silicone rubber/poly(acrylic acid) hydrogel composite. Colloid. Polym. Sci. 284 (12):1411–17. doi:10.1007/s00396-006-1513-8
  • Kohoutek, J., P. Babica, L. Bláha, and B. Maršálek. 2008. A novel approach for monitoring of cyanobacterial toxins: development and evaluation of the passive sampler for microcystins. Anal. Bioanal. Chem. 390 (4):1167–72. doi:10.1007/s00216-007-1785-y
  • Kot-Wasik, A., B. Zabiegała, M. Urbanowicz, E. Dominiak, A. Wasik, and J. Namieśnik. 2007. Advances in passive sampling in environmental studies. Anal. Chim. Acta 602 (2):141–63. doi:10.1016/j.aca.2007.09.013
  • Laschober, S., M. Sulyok, and E. Rosenberg. 2007. Tailoring the macroporous structure of monolithic silica-based capillary columns with potential for liquid chromatography. J. Chromatogr. A 1144 (1):55–62. doi:10.1016/j.chroma.2007.01.016
  • Liu, Y., Y. Zheng, and A. Wang. 2010. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J. Environ. Sci. 22 (4):486–93. doi:10.1016/S1001-0742(09)60134-0
  • MacLeod, S., E. L. McClure, and C. S. Wong. 2007. Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water. Environ. Toxicol. Chem. 26 (12):2517–29. doi:10.1897/07-238.1
  • Magi, E., M. Di Carro, and C. Liscio. 2010. Passive sampling and stir bar sorptive extraction for the determination of endocrine-disrupting compounds in water by GC-MS. Anal. Bioanal. Chem. 397 (3):1335–45. doi:10.1007/s00216-010-3656-1
  • Messina, P. V., and P. C. Schulz. 2006. Adsorption of reactive dyes on titania–silica mesoporous materials. J. Colloid Interface Sci. 299 (1):305–20. doi:10.1016/j.jcis.2006.01.039
  • Nakanishi, K., and N. Tanaka. 2007. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40 (9):863–73. doi:10.1021/ar600034p
  • Namieśnik, J., B. Zabiegała, A. Kot-Wasik, M. Partyka, and A. Wasik. 2005. Passive sampling and/or extraction techniques in environmental analysis: A review. Anal. Bioanal. Chem. 381 (2):279–301. doi:10.1007/s00216-004-2830-8
  • Park, J. W., Y. J. Park, and C. H. Jun. 2011. Post-grafting of silica surfaces with pre-functionalized organosilanes: New synthetic equivalents of conventional trialkoxysilanes. Chem. Commun. 47 (17):4860–71. doi:10.1039/C1CC00038A
  • Potter, O. G., and E. F. Hilder. 2008. Porous polymer monoliths for extraction: Diverse applications and platforms. J. Sep. Sci. 31 (11):1881–906. doi:10.1002/jssc.200800116
  • Scherer, G. W. 1990. Theory of drying. J. Am. Ceram. Soc. 73 (1):3–14. doi:10.1111/j.1151-2916.1990.tb05082.x
  • Svec, F. 2006. Less common applications of monoliths: Preconcentration and solid-phase extraction. J. Chromatogr. B 841 (1–2):52–64. doi:10.1016/j.jchromb.2006.03.055
  • Svec, F., and C. G. Huber. 2006. Monolithic materials: Promises, challenges, achievements. Anal. Chem. 78 (7):2100–107. doi:10.1021/ac069383v
  • Tran, A. T. K., R. V. Hyne, and P. Doble. 2007. Calibration of a passive sampling device for time-integrated sampling of hydrophilic herbicides in aquatic environments. Environ. Toxicol. Chem. 26 (3):435. doi:10.1897/06-401R.1
  • Vermeirssen, E. L. M., C. Dietschweiler, B. I. Escher, J. Voet, and J. Hollender. 2013. Uptake and release kinetics of 22 polar organic chemicals in the chemcatcher passive sampler. Anal. Bioanal. Chem. 405 (15):5225–36. doi:10.1007/s00216-013-6878-1
  • Villani, C., R. Spragg, M. Pour-Ghaz, and W. J. Weiss. 2014. The influence of pore solutions properties on drying in cementitious materials. J. Am. Ceram. Soc. 97 (2):386–93. doi:10.1111/jace.12604
  • Vrana, B., G. A. Mills, E. Dominiak, and R. Greenwood. 2006. Calibration of the chemcatcher passive sampler for the monitoring of priority organic pollutants in water. Environ. Pollut. 142 (2):333–43. doi:10.1016/j.envpol.2005.10.033
  • Walcarius, A., and L. Mercier. 2010. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. 20 (22):4478. doi:10.1039/b924316j
  • Williams, E. A., and J. D. Cargioli. 1979. Annual reports in NMR spectroscopy. In annual reports in NMR spectroscopy, vol. 9:221. Academic Press, New York.
  • Xu, L., Z. G. Shi, and Y. Q. Feng. 2011. Porous monoliths: Sorbents for miniaturized extraction in biological analysis. Anal. Bioanal. Chem. 399 (10):3345–57. doi:10.1007/s00216-010-4190-x
  • Zabiegała, B., A. Kot-Wasik, M. Urbanowicz, and J. Namieśnik. 2010. Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal. Bioanal. Chem. 396 (1):273–96. doi:10.1007/s00216-009-3244-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.