224
Views
8
CrossRef citations to date
0
Altmetric
MASS SPECTROMETRY

Comparative Evaluation of Red Wine from Various European Regions Using Mass Spectrometry Tools

, , , , &
Pages 2645-2659 | Received 14 Jan 2018, Accepted 14 Feb 2018, Published online: 06 Aug 2018

References

  • Acunha, T., C. Simo, C. Ibanez, A. Gallardo, and A. Cifuentes. 2016. Anionic metabolite profiling by capillary electrophoresis-mass spectrometry using a noncovalent polymeric coating. Orange juice and wine as case studies. Journal of Chromatography A 1428:326–35. doi:10.1016/j.chroma.2015.08.001.
  • Ajtony, Z., N. Szoboszlai, E. K. Susko, P. Mezei, K. Gyorgy, and L. Bencs. 2008. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta 76:627–34. doi:10.1016/j.talanta.2008.04.014.
  • Alanon, M. E., M. S. Perez-Coello, and M. L. Marina. 2015. Wine science in the metabolomics era. Trac-Trends in Analytical Chemistry 74:1–20. doi:10.1016/j.trac.2015.05.006.
  • Angelova, V., A. Ivanov, D. Braikov, and K. Ivanov. 1999. Heavy metal (Pb, Cu, Zn and Cd) content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region. OENO One 33:119–31. doi:10.20870/oeno-one.1999.33.3.1022.
  • Arbulu, M., M. C. Sampedro, A. Gomez-Caballero, M. A. Goicolea, and R. J. Barrio. 2015. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines. Analytica Chimica Acta 858:32–41. doi:10.1016/j.aca.2014.12.028.
  • Baiano, A., C. Scrocco, G. Sepielli, and M. A. Del Nobile. 2016. Wine processing: A critical review of physical, chemical, and sensory implications of innovative vinification procedures. Critical Reviews in Food Science and Nutrition 56:2391–407. doi:10.1080/10408398.2013.842886.
  • Bauer, R., and L. M. T. Dicks. 2004. Control of malolactic fermentation in wine. A review. South African Journal of Enology and Viticulture 25:74–88. doi:10.21548/25-2-2141.
  • Blanco-Ulate, B., K. C. Amrine, T. S. Collins, R. M. Rivero, A. R. Vicente, A. Morales-Cruz, C. L. Doyle, Z. Ye, G. Allen, H. Heymann, S. E. Ebeler, and D. Cantu. 2015. Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiology 169 (4):2422–43. doi:10.1104/pp.15.00852.
  • Callejon, R. M., A. M. Troncoso, and M. L. Morales. 2010. Determination of amino acids in grape-derived products: A review. Talanta 81:1143–52. doi:10.1016/j.talanta.2010.02.040.
  • Carlavilla, D., M. Villamiel, I. Martinez-Castro, and M. V. Moreno-Arribas. 2006. Occurrence and significance of quercitol and other inositols in wines during oak wood aging. American Journal of Enology and Viticulture 57:468–73.
  • Castiñeira, M. D. M., R. Brandt, N. Jakubowski, and J. T. Andersson. 2004. Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by inductively coupled plasma−mass spectrometry. Journal of Agricultural and Food Chemistry 52:2953–61. doi:10.1021/jf035119g.
  • Coetzee, P. P., F. P. van Jaarsveld, and F. Vanhaecke. 2014. Intraregional classification of wine via ICP-MS elemental fingerprinting. Food Chemistry 164:485–92. doi:10.1016/j.foodchem.2014.05.027.
  • Cozzolino, D. 2016. Metabolomics in grape and wine: Definition, current status and future prospects. Food Analytical Methods 9:2986–97. doi:10.1007/s12161-016-0502-x.
  • Cvetkovic, J., S. Arpadjan, I. Karadjova, and T. Stafilov. 2002. Determination of thallium in wine by electrothermal atomic absorption spectrometry after extraction preconcentratio. Spectrochimica Acta Part B-Atomic Spectroscopy 57:1101–06. doi:10.1016/S0584-8547(02)00032-0.
  • De Orduna, R. M. 2010. Climate change associated effects on grape and wine quality and production. Food Research International 43:1844–55. doi:10.1016/j.foodres.2010.05.001.
  • de Villiers, A., P. Alberts, A. G. Tredoux, and H. H. Nieuwoudt. 2012. Analytical techniques for wine analysis: An African perspective; a review. Analytica Chimica Acta 730:2–23. doi:10.1016/j.aca.2011.11.064.
  • do Nascimento Silva, F. L., E. M. Schmidt, C. L. Messias, M. N. Eberlin, and A. C. H. F. Sawaya. 2015. Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Analytical Methods 7:53–62. doi:10.1039/C4AY00114A.
  • Donato, P., F. Rigano, F. Cacciola, M. Schure, S. Farnetti, M. Russo, P. Dugo, and L. Mondello. 2016. Comprehensive two-dimensional liquid chromatography-tandem mass spectrometry for the simultaneous determination of wine polyphenols and target contaminants. Journal of Chromatography A 1458:54–62. doi:10.1016/j.chroma.2016.06.042.
  • Draper, J., A. J. Lloyd, R. Goodacre, and M. Beckmann. 2013. Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: A review. Metabolomics 9:S4–29. doi:10.1007/s11306-012-0449-x.
  • Formicki, G., R. Stawarz, A. Gren, and R. Muchacka. 2012. Cadmium, copper, lead and zinc concentrations in low quality wines and alcohol containing drinks from Italy, Bulgaria and Poland. Journal of Microbiology, Biotechnology and Food Sciences 1:753–57.
  • Garde-Cerdan, T., and C. Ancin-Azpilicueta. 2006. Review of quality factors on wine ageing in oak barrels. Trends in Food Science & Technology 17:438–47. doi:10.1016/j.tifs.2006.01.008.
  • Godshaw, J., H. Hopfer, J. Nelson, and S. E. Ebeler. 2017. Comparison of dilution, filtration, and microwave digestion sample pretreatments in elemental profiling of wine by ICP-MS. Molecules 22:1609. doi:10.3390/molecules22101609.
  • Gonzalez-Barreiro, C., R. Rial-Otero, B. Cancho-Grande, and J. Simal-Gandara. 2015. Wine aroma compounds in grapes: A critical review. Critical Reviews in Food Science and Nutrition 55:202–18. doi:10.1080/10408398.2011.650336.
  • Grindlay, G., J. Mora, L. Gras, and M. T. de Loos-Vollebregt. 2011. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications. Analytica Chimica Acta 691:18–32. doi:10.1016/j.aca.2011.02.050.
  • Guadalupe, Z., B. Ayestarán, P. Williams, and T. Doco. 2015. Determination of must and wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size-exclusion chromatography (SEC). Polysaccharides:1–28. doi:10.1007/978-3-319-03751-6_56-2.
  • Guo, Y. Y., Y. P. Yang, Q. Peng, and Y. Han. 2015. Biogenic amines in wine: A review. International Journal of Food Science and Technology 50:1523–32. doi:10.1111/ijfs.12833.
  • Hong, Y. S. 2011. NMR-based metabolomics in wine science. Magnetic Resonance in Chemistry 49:S13–21. doi:10.1002/mrc.2832.
  • Ibanez, J. G., A. Carreon-Alvarez, M. Barcena-Soto, and N. Casillas. 2008. Metals in alcoholic beverages: A review of sources, effects, concentrations, removal, speciation, and analysis. Journal of Food Composition and Analysis 21:672–83. doi:10.1016/j.jfca.2008.06.005.
  • International Organization of Vine and Wine. International code of oenological practices. 2015. www.oiv.int/public/medias/3741/e-code-annex-maximum-acceptable-limits.pdf (accessed November 5, 2017)
  • Ivanova, V., M. Stefova, B. Vojnoski, T. Stafilov, I. Biro, A. Bufa, A. Felinger, and F. Kilar. 2013. Volatile composition of Macedonian and Hungarian wines assessed by GC/MS. Food and Bioprocess Technology 6:1609–17. doi:10.1007/s11947-011-0760-y.
  • Korenovska, M., and M. Suhaj. 2005. Identification of some Slovakian and European wines origin by the use of factor analysis of elemental data. European Food Research and Technology 221:550–58. doi:10.1007/s00217-005-1193-5.
  • Kouremenos, K. A., J. J. Harynuk, W. L. Winniford, P. D. Morrison, and P. J. Marriott. 2010. One-pot microwave derivatization of target compounds relevant to metabolomics with comprehensive two-dimensional gas chromatography. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 878:1761–70. doi:10.1016/j.jchromb.2010.04.036.
  • Liu, S. Q. 2002. Malolactic fermentation in wine - Beyond deacidification. Journal of Applied Microbiology 92:589–601. doi:10.1046/j.1365-2672.2002.01589.x.
  • Lorrain, B., I. Ky, L. Pechamat, and P. L. Teissedre. 2013. Evolution of analysis of polyhenols from grapes, wines, and extracts. Molecules 18:1076–100. doi:10.3390/molecules18011076.
  • Mahieu, N. G., J. L. Genenbacher, and G. J. Patti. 2016. A roadmap for the XCMS family of software solutions in metabolomics. Current Opinion in Chemical Biology 30:87–93. doi:10.1016/j.cbpa.2015.11.009.
  • Mihaljevic Zulj, M., I. Puhelek, A. M. Jagatic Korenika, L. Maslov Bandic, T. Pavlesic, and A. Jeromel. 2015. Organic acid composition in Croatian predicate wines. Agriculturae Conspectus Scientificus 80:113–17.
  • Ministry of Education, Health and Social Care of the Republic of Croatia. 2005. Legislation on wine production (original in Croatian). Narodne novine 2. http://narodne-novine.nn.hr/ (accessed November 20, 2017).
  • Miranda, M., A. Ramos, M. Veiga-da-Cunha, M. C. Loureiro-Diaz, and H. Santos. 1997. Biochemical basis of glucose-induced inhibition of malolactic fermentation in Oenococcus oenos. Journal of Bacteriology 179:5347–54. doi:10.1128/jb.179.17.5347-5354.1997.
  • Orata, F. 2012. Derivatization reactions and reagents for gas chromatography analysis. In Advanced gas chromatography - Progress in agricultural, biomedical and industrial applications, ed. M. Ali Mohd. InTech. http://www.intechopen.com/books/advanced-gaschromatography-progress-in-agricultural-biomedical-and-industrial-applications/derivatization-reactions-andreagents-for-gas-chromatography-analysis (accessed December 11, 2017).
  • Ough, C. S., M. A. Amerine, and D. Fong. 1972. Glycerol in Wine - Determination and Some Factors Affecting. American Journal of Enology and Viticulture 23:1–5.
  • Pii, Y., A. Zamboni, S. Dal Santo, M. Pezzotti, Z. Varanini, and T. Pandolfini. 2017. Prospect on ionomic signatures for the classification of grapevine berries according to their geographical origin. Frontiers in Plant Science 8:640. doi:10.3389/Fpls.2017.00640.
  • Pohl, P. 2007. What do metals tell us about wine? TrAC Trends in Analytical Chemistry 26:941–49. doi:10.1016/j.trac.2007.07.005.
  • Pyrzynska, K. 2004. Analytical methods for the determination of trace metals in wine. Critical Reviews in Analytical Chemistry 34:69–83. doi:10.1080/10408340490475858.
  • Richter, C. L., A. D. Kennedy, L. N. Guo, and N. Dokoozlian. 2015. Metabolomic measurements at three time points of a chardonnay wine fermentation with Saccharomyces cerevisiae. American Journal of Enology and Viticulture 66:294–301. doi:10.5344/ajev.2015.14062.
  • Roullier-Gall, C., M. Witting, R. D. Gougeon, and P. Schmitt-Kopplin. 2014. High precision mass measurements for wine metabolomics. Frontiers in Chemistry 2:102. doi:10.3389/fchem.2014.00102.
  • Rubert, J., O. Lacina, C. Fauhl-Hassek, and J. Hajslova. 2014. Metabolic fingerprinting based on high-resolution tandem mass spectrometry: A reliable tool for wine authentication? Analytical and Bioanalytical Chemistry 406:6791–803. doi:10.1007/s00216-014-7864-y.
  • Sacchi, K. L., L. F. Bisson, and D. O. Adams. 2005. A review of the effect of winemaking techniques on phenolic extraction in red wines. American Journal of Enology and Viticulture 56:197–206. doi:10.1007/s13197-011-0279-2.
  • Santesteban, L. G., C. Miranda, I. Barbarin, and J. B. Royo. 2015. Application of the measurement of the natural abundance of stable isotopes in viticulture: a review. Australian Journal of Grape and Wine Research 21:157–67. doi:10.1111/ajgw.12124.
  • Sanz, M. L., I. Martinez-Castro, and M. V. Moreno-Arribas. 2008. Identification of the origin of commercial enological tannins by the analysis of monosaccharides and polyalcohols. Food Chemistry 111:778–83. doi:10.1016/j.foodchem.2008.04.050.
  • Serapinas, P., P. R. Venskutonis, V. Aninkevicius, Z. Ezerinskis, A. Galdikas, and V. Juzikiene. 2008. Step by step approach to multi-element data analysis in testing the provenance of wines. Food Chemistry 107:1652–60. doi:10.1016/j.foodchem.2007.09.003.
  • Skogerson, K., R. Runnebaum, G. Wohlgemuth, J. de Ropp, H. Heymann, and O. Fiehn. 2009. Comparison of gas chromatography-coupled time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine body. Journal of Agricultural and Food Chemistry 57:6899–907. doi:10.1021/jf9019322.
  • Smith, C. A., E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. 2006. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry 78:779–87. doi:10.1021/ac051437y.
  • Son, H. S., G. S. Hwang, K. M. Kim, H. J. Ahn, W. M. Park, F. Van Den Berg, Y. S. Hong, and C. H. Lee. 2009. Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. Journal of Agricultural Food and Chemistry 57:1481–90. doi:10.1021/jf803388w.
  • Tariba, B. 2011. Metals in wine-impact on wine quality and health outcomes. Biological Trace Element Research 144:143–56. doi:10.1007/s12011-011-9052-7.
  • Tatarczak-Michalewska, M., E. Blicharska, and J. Flieger. 2017. Correlation of metal and trans-resveratrol concentrations in red wine. Analytical Letters 50:2023–29. doi:10.1080/00032719.2016.1257636.
  • Versari, A., W. du Toit, and G. P. Parpinello. 2013. Oenological tannins: A review. Australian Journal of Grape and Wine Research 19:1–10. doi:10.1111/ajgw.12002.
  • Versari, A., V. F. Laurie, A. Ricci, L. Laghi, and G. P. Parpinello. 2014. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International 60:2–18. doi:10.1016/j.foodres.2014.02.007.
  • Wang, B., Y. Li, C. Shao, Y. Tan, and L. Cai. 2012. Cadmium and its epigenetic effects. Current Medicinal Chemistry 19:2611–20. doi:10.2174/092986712800492913.
  • Whiting, G. C. 1976. Organic acid metabolism of yeasts during fermentation of alcoholic beverages - A review. Journal of the Institute of Brewing 82:84–92. doi:10.1002/j.2050-0416.1976.tb03731.x.
  • Wold, S., K. Esbensen, and P. Geladi. 1987. Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems 2:37–52. doi:10.1016/0169-7439(87)80084-9
  • Zinicovscaia, I., O. G. Duliu, O. A. Culicov, R. Sturza, C. Bilici, and S. Gundorina. 2017. Geographical Origin Identification of Moldavian Wines by Neutron Activation Analysis. Food Analytical Methods 10:3523–3530. doi:10.1007/s12161-017-0913-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.