160
Views
6
CrossRef citations to date
0
Altmetric
ATOMIC SPECTROSCOPY

Application of Solid Sampling for the Determination of Total Fluorine in Fish and Seafood by High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometry

ORCID Icon & ORCID Icon
Pages 2778-2791 | Received 09 Feb 2018, Accepted 07 Mar 2018, Published online: 07 Sep 2018

References

  • Ávila, D. V. L., A. R. Borges, M. G. R. Vale, R. G. O. Araujo, and E. A. Passos. 2017. Determination of Co and Cr in wet animal feeds using direct solid sample analysis by HR-CS GF AAS. Microchem. J. 133:524–29. doi:10.1016/j.microc.2017.04.028.
  • Baysal, A., N. Ozbek, and S. Akman. 2010. A practical solid sampling method for the determination of lead in chewing gum by electrothermal atomic absorption spectrometry. Food Chem. 123 (3):901–04. doi:10.1016/j.foodchem.2010.05.004.
  • Baysal, A., M. Ozcan, and S. Akman. 2011. A rapid method for the determination of Pb, Cu and Sn in dried tomato sauces with solid sampling electrothermal atomic absorption spectrometry. Food Chem. Toxicol. 49 (6):1399–1403. doi:10.1016/j.fct.2011.03.031.
  • Borges, A. R., Á. T. Duarte, M. D. L. Potes, M. M. Silva, M. G. R. Vale, and B. Welz. 2016. Fluorine in eye shadow: Development of method using high-resolution continuum source graphite furnace molecular absorption spectrometry via calcium mono-fluoride with direct solid sample introduction. Microchem. J. 124:410–15. doi:10.1016/j.microc.2015.09.025.
  • Borges, A. R., L. L. Francois, B. Welz, E. Carasek, and M. G. R. Vale. 2014. Determination of fluorine in plant materials via calcium mono-fluoride using high-resolution graphite furnace molecular absorption spectrometry with direct solid sample introduction. J. Anal. Atom. Spec. 29 (9):1564–69. doi:10.1039/c4ja00067f.
  • Bücker, S., and J. Acker. 2012. Spectrometric analysis of process etching solutions of the photovoltaic industry—Determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms. Talanta 94 (17):335–341. doi:10.1016/j.talanta.2012.03.052.
  • Bucker, S., V. Hoffmann, and J. Acker. 2014. Determination of fluorine by molecular absorption spectrometry of AlF using a high-resolution continuum source spectrometer and a C2H2/N2O flame. Curr. Anal. Chem. 10 (3):426–34.
  • Butcher, D. J. 1993. Determination of fluorine, chlorine, and bromine by molecular absorption spectrometry. Microchem. J. 48 (3):303–17. doi:10.1006/mchj.1993.1104.
  • Dittrich, K. 1978. Molecular absorption spectrometry by electrothermal volatilization in a graphite furnace. Part 1. Basis of the method and studies of the molecular absorption of gallium and indium halides. Anal. Chim. Acta 97 (1):59–68.
  • Dittrich, K. 1979. Molecular absorption with electrothermal volatilization in a graphite tube. Part 3. A study of the determination of fluoride traces by AlF, GaF, InF and TlF molecular absorption. Anal. Chim. Acta 111:123–35. doi:10.1016/0039-9140(85)80114-4.
  • Dittrich, K., V. M. Shkinev, and B. V. Spivakov. 1985. Molecular absorption spectrometry (MAS) by electrothermal evaporation in a graphite furnace—XIII: Determination of traces of fluoride by mas of AlF after liquid–liquid extraction of fluoride with triphenylantimony(V) dihydroxide. Talanta 32 (11):1019–22. doi:10.1016/0039-9140(85)80114-4.
  • Dos Santos, L. O., G. C. Brandao, A. M. Dos Santos, S. L. Ferreira, and V. A. Lemos. 2017. Direct and simultaneous determination of copper and iron in flours by solid sample analysis and high-resolution continuum source graphite furnace atomic absorption spectrometry. Food Anal. Meth. 10 (2):469–76. doi:10.1007/s12161-016-0600-9.
  • Gleisner, H., B. Welz, and J. W. Einax. 2010. Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer. Spectrochim. Acta B 65 (9–10):864–69. doi:10.1016/j.sab.2010.08.003.
  • Huang, M. D., H. Becker-Ross, M. Okruss, S. Geisler, S. Florek, S. Richter, and A. Meckelburg. 2014. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry. Spectrochim. Acta B 94:34–38. doi:10.1016/j.sab.2014.02.005.
  • Kruger, M., M. D. Huang, H. Becker-Ross, S. Florek, I. Ott, and R. Gust. 2012. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry. Spectrochim. Acta B 69:50–55. doi:10.1016/j.sab.2012.02.004.
  • Kurfürst, U. 1991. Statistical treatment of ETA-AAS (electrothermal atomisation - atomic absorption spectrometry) solid sampling data of heterogeneous samples. Pure Appl. Chem. 63 (9):1205–11.
  • Kurfürst, U. 1998. Solid sample analysis. Berlin, Heidelberg: Springer-Verlag.
  • Kurfurst, U., J. Pauwels, K. H. Grobecker, M. Stoeppler, and H. Muntau. 1993. Micro heterogeneity of trace-elements in reference materials - Determination and statistical evaluation. Fresenius J. Anal. Chem. 345 (2–4):112–20. doi:10.1007/bf00322568.
  • Machado, P. M., S. Morés, É. R. Pereira, B. Welz, E. Carasek, and J. B. de Andrade. 2015. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochim. Acta B 105:18–24. doi:10.1016/j.sab.2014.08.001.
  • Mascarenhas, A. K. 2000. Risk factors for dental fluorosis: A review of the recent literature. Pediatr. Dent. 22 (4):269–77.
  • Mior, R., S. Morés, B. Welz, E. Carasek, and J. B. de Andrade. 2013. Determination of sulfur in coal using direct solid sampling and high-resolution continuum source molecular absorption spectrometry of the CS molecule in a graphite furnace. Talanta 106:368–74. doi:10.1016/j.talanta.2013.01.004.
  • Morés, S., G. C. Monteiro, F. D. S. Santos, E. Carasek, and B. Welz. 2011. Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium mono-fluoride CaF. Talanta 85 (5):2681–85. doi:10.1016/j.talanta.2011.08.044.
  • Ozbek, N., and S. Akman. 2012a. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer. Talanta 94:246–50. doi:10.1016/j.talanta.2012.03.034.
  • Ozbek, N., and S. Akman. 2012b. Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer. Spectrochim. Acta B 69:32–37. doi:10.1016/j.sab.2012.03.003.
  • Ozbek, N., and S. Akman. 2013a. Determination of fluorine in milk samples via calcium-monofluoride by electrothermal molecular absorption spectrometry. Food Chem. 138 (1):650–54. doi:10.1016/j.foodchem.2012.11.008.
  • Ozbek, N., and S. Akman. 2013b. Determination of total sulfur in food samples by solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry. J. Agric. Food. Chem. 61 (20):4816–21. doi:10.1021/jf4009263.
  • Ozbek, N., and S. Akman. 2013c. Molecule formation mechanisms of strontium mono fluoride in high-resolution continuum source electrothermal atomic absorption spectrometry. Anal. Sci. 29 (7):741–46. doi:10.2116/analsci.29.741.
  • Ozbek, N., and S. Akman. 2014. Determination of fluorine in milk and water via molecular absorption of barium monofluoride by high-resolution continuum source atomic absorption spectrometer. Microchem. J. 117:111–15. doi:10.1016/j.microc.2014.06.013.
  • Ozbek, N., and S. Akman. 2015. Determination of fluorine in Turkish wines by molecular absorbance of CaF using a high resolution continuum source atomic absorption spectrometer. LWT – Food Sci. Tech. 61 (1):112–16.
  • Ozbek, N., and S. Akman. 2016. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry. Food Chem. 211:180–84. doi:10.1016/j.foodchem.2016.05.044.
  • Ozbek, N., H. Baltaci, and A. Baysal. 2016. Investigation of fluorine content in PM2.5 airborne particles of Istanbul, Turkey. Environ. Sci. Pollut. Res. Int. 23 (13):13169–77. doi:10.1007/s11356-016-6506-7.
  • Ozbek, N., G. S. Ustabasi, and S. Akman. 2015. Direct determination of lead in plastic toys by solid sampling high resolution-continuum source graphite furnace atomic absorption spectrometry. J. Anal. Atom. Spec. 30 (8):1782–86. doi:10.1039/c5ja00185d.
  • Pereira, É. R., L. M. Rocha, H. R. Cadorim, V. D. Silva, B. Welz, E. Carasek, and J. B. De Andrade. 2015. Determination of chlorine in coal via the SrCL molecule using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochim. Acta B 114:46–50. doi:10.1016/j.sab.2015.10.001.
  • Preedy, V. 2015. Fluorine: Chemistry, analysis, function and effects: Royal Society of Chemistry, Cambridge, UK.
  • Rigalli, A., J. Ballina, E. Roveri, and R. Puche. 1990. Inhibitory effect of fluoride on the secretion of insulin. Calcif. Tissue Int. 46 (5):333–38. doi:10.1007/bf02563825.
  • Virgilio, A., J. A. Nobrega, J. F. Rego, and J. A. G. Neto. 2012. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants. Spectrochim. Acta B 78:58–61. doi:10.1016/j.sab.2012.09.003.
  • Welz, B., F. G. Lepri, R. G. O. Araujo, S. L. C. Ferreira, M.-D. Huang, M. Okruss, and H. Becker-Ross. 2009. Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces-a review. Anal. Chim. Acta. 647 (2):137–48. doi:10.1016/j.aca.2009.06.029.
  • Welz, B., M. G. R. Vale, E. R. Pereira, I. N. B. Castilho, and M. B. Dessuy. 2014. Continuum source atomic absorption spectrometry: Past, present and future aspects - A critical review. J. Brazil. Chem. Soc. 25 (5):799–821. doi:10.5935/0103-5053.20140053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.