380
Views
14
CrossRef citations to date
0
Altmetric
FLUORESCENCE

Fluorescent Determination of Dopamine Using Polythymine-Templated Copper Nanoclusters

, , &
Pages 2868-2877 | Received 08 Jan 2018, Accepted 15 Mar 2018, Published online: 09 May 2018

References

  • Chen, T., L. N. Tang, F. Yang, Q. Zhao, X. Jin, and Y. Ning. 2016. Electrochemical determination of dopamine by a reduced graphene oxide-gold nanoparticle-modified glassy carbon electrode. Anal. Lett. 49:2223–33. doi:10.1080/00032719.2016.1142558.
  • Farahmand-Nejada, M. A., and M. R. Hormozi-Nezhad. 2017. Design of a ratiometric fluorescent probe for naked eye detection of dopamine. Anal. Methods 9:3505–12. doi:10.1039/c7ay00755h.
  • Ge, J., Z. Z. Dong, D. M. Bai, L. Zhang, Y. L. Hu, D. Y. Ji, and Z. H. Li. 2017. A novel label-free fluorescent molecular beacon for the detection of 3′-5′ exonuclease enzymatic activity using DNA-templated copper nanoclusters. New J. Chem. 41:9718–23. doi:10.1039/c7nj01761h.
  • Ge, J., L. Zhang, Z. Z. Dong, Q. Y. Cai, and Z. H. Li. 2016. Sensitive and label-free T4 polynucleotide kinase/phosphatase detection based on poly(thymine)-templated copper nanoparticles coupled with nicking enzyme-assisted signal amplification. Anal. Methods 8:2831–36. doi:10.1039/c6ay00306k.
  • Guo, Y. M., F. Cao, X. Lei, L. Mang, S. Cheng, and J. Song. 2016. Fluorescent copper nanoparticles: Recent advances in synthesis and applications for sensing metal ions. Nanoscale 8:4852–63. doi:10.1039/c6nr00145a.
  • Hu, Y. H., Y. M. Wu, T. T. Chen, X. Chu, and R. Q. Yu. 2013. Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols. Anal. Methods 5:3577–81. doi:10.1039/c3ay40088c.
  • Jin, R., C. Zeng, M. Zhou, and Y. Chen. 2016. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 116:10346–413. doi:10.1021/acs.chemrev.5b00703.
  • Li, J., J. J. Zhu, and K. Xu. 2014. Fluorescent metal nanoclusters: From synthesis to applications. TrAC, Trends Anal. Chem. 58:90–98. doi:10.1016/j.trac.2014.02.011.
  • Li, J., L. Si, J. Bao, Z. Wang, and Z. H. Dai. 2017a. Fluorescence regulation of poly(thymine)-templated copper nanoparticles via an enzyme-triggered reaction toward sensitive and selective detection of alkaline phosphatase. Anal. Chem. 89:3681–86. doi:10.1021/acs.analchem.6b05112.
  • Li, W. H., L. Ma, B. X. Wu, Y. Zhang, and Z. Li. 2017b. A chemically reduced graphene oxide-Au nanocage composite for the electrochemical detection of dopamine and uric acid. Anal. Methods 9:3819–24. doi:10.1039/c7ay00677b.
  • Lian, J., Q. Liu, Y. Jin, and B. X. Li. 2017. Histone-DNA interaction: An effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters. Chem. Commun. 53:12568–71. doi:10.1039/c7cc07424g.
  • Liu, Y., K. Ai, and L. H. Lu. 2014. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114:5057–115. doi:10.1021/cr400407a.
  • Lotharius, J., and P. Brundin. 2002. Pathogenesis of Parkinson’s disease: Dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3:932–42. doi:10.1038/nrn983.
  • Ou, L. J., X. Y. Li, L. J. Li, H. W. Liu, A. M. Sun, and K. J. Liu. 2015. A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes. Analyst 140:1871–75. doi:10.1039/c4an01994f.
  • Petty, J. T., J. Zheng, N. V. Hud, and R. M. Dickson. 2004. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 126:5207–12. doi:10.1021/ja031931o.
  • Qing, Z. H., X. X. He, D. G. He, K. M. Wang, F. Z. Xu, T. P. Qing, and X. H. Yang. 2013. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem. Int. Ed. 52:9719–22. doi:10.1002/ange.201304631.
  • Rotaru, A., S. Dutta, E. Jentzsch, K. Gothelf, and A. Mokhir. 2010. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Ed. 49:5665–67. doi:10.1002/anie.200907256.
  • Tao, Y., M. Q. Li, J. S. Ren, and X. G. Qu. 2015. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 44:8636–63. doi:10.1039/c5cs00607d.
  • Tian, X., X. J. Kong, Z. M. Zhu, T. T. Chen, and X. Chu. 2015. A new label-free and turn-on strategy for endonuclease detection using a DNA–silver nanocluster probe. Talanta 131:116–20. doi:10.1016/j.talanta.2014.07.092.
  • Wang, G. F., J. Wan, and X. J. Zhang. 2017. TTE DNA-Cu NPs: Enhanced fluorescence and application in a target DNA triggered dual-cycle amplification biosensor. Chem. Commun. 53:5629–32. doi:10.1039/c7cc02304a.
  • Wang, H. B., H. D. Zhang, Y. Chen, and Y. M. Liu. 2015. A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens. Bioelectron. 74:581–86. doi:10.1016/j.bios.2015.07.021.
  • Wang, H. B.; Y. Chen, Y. Li, and Y. M. Liu. 2016. Blocking the formation of fluorescent poly(thymine)-templated copper nanoparticles for label-free and sensitive detection of kojic acid in foodstuffs. Anal. Methods 8:8322–28. doi:10.1039/c6ay02766k.
  • Wang, H. B., Y. Li, H. Y. Bai, and Y. M. Liu. 2018. DNA-templated Au nanoclusters and MnO2 sheets: A label-free and universal fluorescence biosensing platform. Sens. Actuat. B Chem. 259:204–10. doi:10.1016/j.snb.2017.12.048.
  • Wise, R. A. 2004. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5:483–94. doi:10.1038/nrn1406.
  • Wu, C., Q. Cheng, K. B. Wu, G. Wu, and Q. Li. 2014. Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Anal. Chim. Acta 825:26–33. doi:10.1016/j.aca.2014.03.036.
  • Xu, H. Y., J. J. Xiao, L. Yan, L. N. Zhu, and B. H. Liu. 2016. An electrochemical sensor for selective detection of dopamine based on nickel tetrasulfonated phthalocyanine functionalized nitrogen-doped graphene nanocomposites. J. Electroanal. Chem. 779:92–98. doi:10.1016/j.jelechem.2016.04.032.
  • Zhang, A., J. L. Neumeyer, and R. J. Baldessarini. 2007. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 107:274–302. doi:10.1002/chin.200722240.
  • Zhang, L., and E. K. Wang. 2014. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 9:132–57. doi:10.1016/j.nantod.2014.02.010.
  • Zhang, L., Q. Y. Cai, J. Li, J. Ge, J. Y. Wang, Z. Z. Dong, and Z. H. Li. 2015. A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles. Biosens. Bioelectron. 69:77–82. doi:10.1016/j.bios.2015.02.012.
  • Zhang, L. L., J. J. Zhao, M. Duan, H. Zhang, J. H. Jiang, and R. Q. Yu. 2013. Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. Anal. Chem. 85:3797–801. doi:10.1021/ac4001942.
  • Zhao, Z. Y., M. M. Zhang, Y. J. Li, S. Q. Cheng, X. Chen, and J. Wang. 2015. Evaluation of electrochemically reduced gold nanoparticle-graphene nanocomposites for the determination of dopamine. Anal. Lett. 48:1437–53. doi:10.1080/00032719.2014.984189.
  • Zheng, Y. Y., C. X. Li, X. T. Ding, Q. Yang, Y. M. Qi, H. M. Zhang, and L. T. Qu. 2017. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chinese Chem. Lett. 28:1473–78. doi:10.1016/j.cclet.2017.03.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.