626
Views
20
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Analysis of Silver Nanoparticles Using Single-Particle Inductively Coupled Plasma – Mass Spectrometry (ICP-MS): Parameters Affecting the Quality of Results

, , , , &
Pages 288-307 | Received 12 Dec 2017, Accepted 27 Mar 2018, Published online: 11 May 2018

References

  • Aznar, R., F. Barahona, O. Geiss, J. Ponti, T. J. Luis, and J. Barrero-Moreno. 2017. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Talanta 175:200–208. doi:10.1016/j.talanta.2017.07.048.
  • Dan, Y., H. Shi, C. Stephan, and X. Liang. 2015a. Rapid analysis of titanium dioxide nanoparticles in sunscreens using single particle inductively coupled plasma-mass spectrometry. Microchem. J. 122:119–26. doi:10.1016/j.microc.2015.04.018.
  • Dan, Y., W. Zhang, R. Xue, X. Ma, C. Stephan, and H. Shi. 2015b. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ. Sci. Technol. 49:3007–14. doi:10.1021/es506179e.
  • Degueldre, C., and P. Y. Favarger. 2003. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Coll. Surf. A 217:137–42. doi:10.1016/S0927-7757(02)00568-X.
  • Degueldre, C., and P. Y. Favarger. 2004. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 62:1051–4. doi:10.1016/j.talanta.2003.10.016.
  • Ebdon, L., M. Foulkes, and K. Sutton. 1997. Slurry nebulization in plasmas. J. Anal. At. Spectrom. 12:213–29. doi:10.1039/a604914a.
  • Fedlheim, D. L., and C. A. Foss. 2001. Metal nanoparticles: Synthesis, characterisation and application. New York, USA: Marcel Dekker.
  • Gallego-Urrea, J. A., J. Tuoriniemi, and M. Hassellöv. 2011. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC-Trend. Anal. Chem. 30:473–83. doi:10.1016/j.trac.2011.01.005.
  • Hineman, A., and C. Stephan. 2014. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J. Anal. At. Spectrom. 29:1252–7. doi:10.1039/c4ja00097h.
  • Hosokawa, M., K. Nogi, M. Naito, and T. Yokoyama. 2016. Nanoparticle technology handbook. Oxford, UK: Elsevier.
  • Kateman, G., and F. W. Pijpers 1981. Quality control in analytical chemistry. New York, USA: John Wiley & Sons, Ltd.
  • Kim, S. T., H. K. Kim, S. H. Han, E. Ch. Jung, and S. Lee. 2013. Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry. Microchem. J. 110:636–42. doi:10.1016/j.microc.2013.07.015.
  • Kourti, T. 2006. Turbidimetry in particle size analysis. In Encyclopedia of analytical chemistry, Ed., R.A. Meyers. John Wiley & Sons, Ltd.
  • Laborda, F., E. Bolea, and J. Jiménez-Lamana. 2014. Single particle inductively coupled plasma mass spectrometry: A powerful tool for nanoanalysis. Anal. Chem. 86:2270–8. doi:10.1021/ac402980q.
  • Laborda, F., E. Bolea, G. Cepriá, M. T. Gómez, M. S. Jiménez, J. Pérez-Arantegui, and J. R. Castill. 2016. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta 904:10–32. doi:10.1016/j.aca.2015.11.008.
  • Laborda, F., J. Jiménez-Lamana, E. Bolea, and J. R. Castillo. 2013. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. At. Spectrom. 28:1220–32. doi:10.1039/c3ja50100k
  • Lee, W. W., and W. T. Chan. 2015. Calibration of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). J. Anal. At. Spectrom. 30:1245–54. doi:10.1039/c4ja00408f.
  • Loeschner, K., J. Navratilova, C. Kobler, K. Molhave, S. Wagner, F. von der Krammer, and E. H. Larsen. 2013. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal. Bioanal. Chem. 405:8185–95. doi:10.1007/s00216-013-7228-z.
  • Loeschner, K., M. S. J. Brabrand, J. J. Sloth, and E. H. Larsen. 2014. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS. Anal. Bioanal. Chem. 406:3845–51. doi:10.1007/s00216-013-7431-y.
  • Magnuson, B., and U. Örnemark (Eds.). 2014. The fitness for purpose of analytical methods – A laboratory guide to method validation and related topics. 2nd ed. Eurachem. www.eurachem.org.
  • Merrifield, R. C., C. Stephan, and J. Lead. 2017. Determining the concentration dependent transformations of Ag nanoparticles in complex media: Using SP-ICP-MS and Au@Ag core–shell nanoparticles as tracers. Environ. Sci. Technol. 51:3206–13. doi:10.1021/acs.est.6b05178.
  • Mitrano, D. M., E. K. Lesher, A. Bednar, J. Monserud, C. P. Higgins, and J. F. Ranville. 2012. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 31:115–21. doi:10.1002/etc.719.
  • Olesik, J. W., and P. J. Gray. 2012. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: Determination of the number of particles and the analyte mass in each particle. J. Anal. At. Spectrom. 27:1143–55. doi:10.1039/c2ja30073g.
  • Pace, H. E., N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, and J. F. Ranville. 2011. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 83:9361–9. doi:10.1021/ac201952t.
  • Pace, H. E., N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, and J. F. Ranville. 2012. Correction to determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 84:4633. doi:10.1021/ac300942m
  • Peters, R. J. B., G. van Bemmel, Z. Herrera-Rivera, H. P. F. G. Helsper, H. J. Marvin, S. Weigel, P. C. Tromp, A. G. Oomen, A. G. Rietveld, and H. Bouwmeester. 2014. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. J. Agric. Food Chem. 62:6285–93. doi:10.1021/jf5011885
  • Schwertfeger, D. M., J. R. Velicogna, A. H. Jesmer, S. Saatcioglu, H. McShane, R. P. Scroggins, and J. I. Princz. 2017. Extracting metallic nanoparticles from soils for quantitative analysis: Method development using engineered silver nanoparticles and SP-ICP-MS. Anal. Chem. 89:2505–13. doi:10.1021/acs.analchem.6b04668.
  • Soloviev, M. 2012. Nanoparticles in biology and medicine. New York, USA: Humana Press.
  • Telgmann, L., C. D. Metcalfe, and H. Hintelmann. 2014. Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution. J. Anal. At. Spectrom. 29:1265–72. doi:10.1039/c4ja00115j.
  • Tiede, K., A. B. A. Boxall, S. P. Tear, J. Lewis, H. David, and M. Hassellöv. 2008. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. A 25:795–821. doi:10.1080/02652030802007553.
  • Tuoriniemi, J., G. Cornelis, and M. Hassellöv. 2012. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal. Chem. 84:3965–72. doi:10.1021/ac203005r.
  • Verleysen, E., E. Van Doren, N. Waegeneers, P.-J. De Temmerman, M. Abi Daoud Francisco, and J. Mast. 2015. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J. Agr. Food Chem. 63:3570–8. doi:10.1021/acs.jafc.5b00578.
  • Yang, Y., C. L. Long, Z. G. Yang, H. P. Li, and Q. Wang. 2014. Characterization and determination of silver nanoparticle using single particle-inductively coupled plasma-mass spectrometry. Chinese J. Anal. Chem. 42:1553–9. doi:10.1016/S1872-2040(14)60777-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.