574
Views
19
CrossRef citations to date
0
Altmetric
Electrochemistry

Enhanced Specificity and Sensitivity for the Determination of Nickel(II) by Square-wave Adsorptive Cathodic Stripping Voltammetry at Disposable Graphene-modified Pencil Graphite Electrodes

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 373-398 | Received 26 Feb 2018, Accepted 22 Apr 2018, Published online: 11 Jul 2018

References

  • Al-Ghamdi, A. F., M. M. Hefnawy, A. A. Al-Majed, and F. F. Belal. 2012. Development of square-wave adsorptive stripping voltammetric method for determination of acebutolol in pharmaceutical formulations and biological fluids. Chemistry Central Journal 6 (1)15. doi:10.1186/1752-153X-6-15.
  • Alegret, S., and A. Merkoçi. 2007. Electrochemical sensor analysis. Amsterdam: Elsevier. https://www.elsevier.com/books/electrochemical-sensor-analysis/alegret/978-0-444-53053-0.
  • Amini, M. K., and M. Kabiri. 2005. Determination of trace amounts of nickel by differential pulse adsorptive cathodic stripping voltammetry using calconcarboxylic acid as a chelating agent. Journal of the Iranian Chemical Society 2 (1):32–39. doi:10.1007/BF03245777.
  • Amirkavei, M., S. Dadfarnia, and A. M. H. Shabani. 2013. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous separation/preconcentration of nickel, cobalt and copper prior to determination by electrothermal atomic absorption spectrometry. Química Nova 36 (1):63–68. doi:10.1590/S0100-40422013000100012.
  • Baldrianova, L., I. Svancara, M. Vlcek, A. Economou, and S. Sotiropoulos. 2006. Effect of bi(III) concentration on the stripping voltammetric response of in situ bismuth-coated carbon paste and gold electrodes. Electrochimica Acta 52 (2):481–490. doi:10.1016/j.electacta.2006.05.029.
  • Baxter, L., A. Bobrowski, M. Bond, G. Heath, R. L. Paul, R. Mrzljak, and J. Zarebski. 1998. Electrochemical and spectroscopic investigation of the reduction of dimethylglyoxime at mercury electrodes in the presence of cobalt and nickel. Analytical Chemistry 70 (7):1312–1323. doi:10.1021/ac9703616.
  • Beiraghi, A., S. Babaee, and M. Roshdi. 2012. Simultaneous preconcentration of cadmium, cobalt and nickel in water samples by cationic micellar precipitation and their determination by inductively coupled plasma-optical emission spectrometry. Microchemical Journal 100 (1):66–71. doi:10.1016/j.microc.2011.09.003.
  • Bobrowski, A., A. Królicka, M. Maczuga, and J. Zarębski. 2014. A novel screen-printed electrode modified with lead film for adsorptive stripping voltammetric determination of cobalt and nickel. Sensors and Actuators, B: Chemical 191:291–297. doi:10.1016/j.snb.2013.10.006.
  • Büyükpınar, Ç., E. Maltepe, D. S. Chormey, N. San, and S. Bakırdere. 2017. Determination of nickel in water and soil samples at trace levels using photochemical vapor generation-batch type ultrasonication assisted gas liquid separator-atomic absorption spectrometry. Microchemical Journal 132 :167–171. doi:10.1016/j.microc.2017.01.024.
  • Cempel, M., and G. Nikel. 2006. Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies 15 (3):375–382. doi:10.1109/TUFFC.2008.827.
  • Çetinkaya, E., and A. Aydin. 2017. A novel thiocarbohydrazide derivative for preconcentration of copper(II), nickel(II), lead(II), and cadmium(II) in water samples for flame atomic absorption spectrophotometry. Desalination and Water Treatment 74:224–236. doi:10.5004/dwt.2017.20702.
  • Denkhaus, E., and K. Salnikow. 2002. Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology 42 (1):35–56. doi:10.1016/S1040-8428(01)00214-1.
  • Devadas, Balamurugan, Muniyandi Rajkumar, Shen-Ming Chen, and R. Saraswathi. 1985. Electrochemically reduced graphene oxide/neodymium hexacyanoferrate modified electrodes for the electrochemical detection of paracetomol. Electrochimica Acta 37(2):1835–1841. doi:10.1007/s10800-007-9392-3.
  • Dönmez, K. B., E. Çetinkaya, S. Deveci, S. Karadağ, Y. Şahin, and M. Doğu. 2017. Preparation of electrochemically treated nanoporous pencil-graphite electrodes for the simultaneous determination of Pb and Cd in water samples. Analytical and Bioanalytical Chemistry 409 (20):4827–4837. doi:10.1007/s00216-017-0426-3.
  • Dossi, N., R. Toniolo, A. Pizzariello, F. Impellizzieri, E. Piccin, and G. Bontempelli. 2013. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 34 (14):2085–2091. doi:10.1002/elps.201200425.
  • Economou, A., P. R. Fielden, and M. H. Briggs. 1993. Simultaneous determination of nickel(II) and cobalt(II) by square-wave adsorptive stripping voltammetry on a rotating disc mercury film electrode. The Analyst 118 (1):47. doi:10.1039/an9931800047.
  • Elqudaby, H. M., H. A. M. Hendawy, E. R. Souaya, G. G. Mohamed, and G. M. G. Eldin. 2016. Utility of activated glassy carbon and pencil graphite electrodes for voltammetric determination of nalbuphine hydrochloride in pharmaceutical and biological fluids. International Journal of Electrochemistry 2016:1–10. doi:10.1155/2016/8621234.
  • Erdem, A., H. Karadeniz, and A. Caliskan. 2009. Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis 21 (3–5):464–471. doi:10.1002/elan.200804422.
  • Farghaly, O. A. 2003. Direct and simultaneous voltammetric analysis of heavy metals in tap water samples at assiut city: An approach to improve the analysis time for nickel and cobalt determination at mercury film electrode. Microchemical Journal 75 (2):119–131. doi:10.1016/S0026-265X(03)00090-0.
  • Galbeiro, R., S. Garcia, and I. Gaubeur. 2014. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry. Journal of Trace Elements in Medicine and Biology 28 (2):160–165. doi:10.1016/j.jtemb.2013.12.004.
  • Gharib Naseri, N.,. S. J. Baldock, A. Economou, N. J. Goddard, and P. R. Fielden. 2008. Disposable electrochemical flow cells for catalytic adsorptive stripping voltammetry (CAdSV) at a bismuth film electrode (BiFE). Analytical and Bioanalytical Chemistry 391 (4):1283–1292. doi:10.1007/s00216-008-1948-5.
  • Ghoneim, M. M., A. M. Hassanein, E. Hammam, and A. M. Beltagi. 2000. Simultaneous determination of cd, pb, cu, sb, bi, se, zn, mn, ni, co and fe in water samples by differential pulse stripping voltammetry at a hanging mercury drop electrode. Fresenius’ Journal of Analytical Chemistry 367 (4):378–383. doi:10.1007/s002160000410.
  • Goldcamp, M. J., M. N. Underwood, J. L. Cloud, S. Harshman, and K. Ashley. 2008. An environmentally friendly, cost-effective determination of lead in environmental samples using anodic stripping voltammetry. Journal of Chemical Education 85 (7):976. doi:10.1021/ed085p:976.
  • Kang, X., J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin. 2009. Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors and Bioelectronics 25 (4):901–905. doi:10.1016/j.bios.2009.09.004.
  • Kapturski, P., and A. Bobrowski. 2008. The silver amalgam film electrode in catalytic adsorptive stripping voltammetric determination of cobalt and nickel. Journal of Electroanalytical Chemistry 617 (1):1–6. doi:10.1016/j.jelechem.2008.01.007.
  • Kariuki, J., E. Ervin, and C. Olafson. 2015. Development of a novel, low-cost, disposable wooden pencil graphite electrode for use in the determination of antioxidants and other biological compounds. Sensors (Switzerland) 15 (8):18887–18900. doi:10.3390/s150818887.
  • Keskin, E., Y. Yardım, and Z. Şentürk. 2010. Voltammetry of benzo[a]pyrene in aqueous and nonaqueous media: Adsorptive stripping voltammetric determination at pencil graphite electrode. Electroanalysis 22 (11):1191–1199. doi:10.1002/elan.200900527.
  • Keyvanfard, M., R. Shakeri, H. Karimi-Maleh, and K. Alizad. 2013. Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Materials Science and Engineering C 33 (2):811–816. doi:10.1016/j.msec.2012.11.005.
  • Khanra, P., T. Kuila, N. H. Kim, S. H. Bae, D. S Yu, and J. H. Lee. 2012. Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chemical Engineering Journal 183:526–533. doi:10.1016/j.cej.2011.12.075.
  • Khashaba, P. Y., H. R. H. Ali, and M. El-Wekil. 2017. Highly sensitive and selective complexation based voltammetric methods for the analysis of rabeprazole sodium in real samples. RSC Advances 7 (6):3043–3050. doi:10.1039/c6ra25565e.
  • Korolczuk, M., K. Tyszczuk, and M. Grabarczyk. 2005. Adsorptive stripping voltammetry of nickel and cobalt at in situ plated lead film electrode. Electrochemistry Communications 7 (12):1185–1189. doi:10.1016/j.elecom.2005.08.022.
  • Kristiansen, J., J. M. Christensen, T. Henriksen, N. H. Nielsen, and T. Menné. 2000. Determination of nickel in fingernails and forearm skin (stratum corneum). Analytica Chimica Acta 403 (1–2):265–272. doi:10.1016/S0003-2670(99)00568-1.
  • Kudr, J., L. Richtera, L. Nejdl, K. Xhaxhiu, P. Vitek, B. Rutkay-Nedecky, D. Hynek, P. Kopel, V. Adam, and R. Kizek. 2016. Improved electrochemical detection of zinc ions using electrode modified with electrochemically reduced graphene oxide. Materials 9 (1):12–31. doi:10.3390/ma9010031.
  • Kumar, B. N., S. Kanchi, M. I. Sabela, K. Bisetty, and N. V. V. Jyothi. 2016. Spectrophotometric determination of nickel (II) in waters and soils: Novel chelating agents and their biological applications supported by DFT method. Karbala International Journal of Modern Science 2 (4):239–250. doi:10.1016/j.kijoms.2016.08.003.
  • Lee, S., S.-K. Park, E. Choi, and Y. Piao. 2016. Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. Journal of Electroanalytical Chemistry 766:120–127. doi:10.1016/j.jelechem.2016.02.003.
  • Levent, A., Y. Yardim, and Z. Senturk. 2009. Voltammetric behavior of nicotine at pencil graphite electrode and its enhancement determination in the presence of anionic surfactant. Electrochimica Acta 55 (1):190–195. doi:10.1016/j.electacta.2009.08.035.
  • Li, D., T. Okajima, L. Mao, and T. Ohsaka. 2014. Bioelectrocatalytic oxygen reduction reaction by bilirubin oxidase adsorbed on glassy carbon and edge-plane pyrolytic graphite electrodes: Effect of redox mediators. International Journal of Electrochemical Science 9 (3):1390–1398.
  • Li, J., C. Zheng, L. Qi, M. Yoshio, and H. Wang. 2017. Storage behavior of isomeric quaternary alkyl ammonium cations in graphite electrodes for graphite/activated carbon capacitors. Electrochimica Acta 248:342–348. doi:10.1016/j.electacta.2017.07.148.
  • Ma, F., D. Jagner, and L. Renman. 1997. Mechanism for the electrochemical stripping reduction of the nickel and cobalt dimethylglyoxime complexes. Analytical Chemistry 69 (9):1782–1784. doi:10.1021/ac961023s.
  • Maher, A., M. Sadeghi, and A. Moheb. 2014. Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology. Desalination 352:166–173. doi:10.1016/j.desal.2014.08.023.
  • Morfobos, M., A. Economou, and A. Voulgaropoulos. 2004. Simultaneous determination of nickel(II) and cobalt(II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode. Analytica Chimica Acta 519 (1):57–64. doi:10.1016/j.aca.2004.05.022.
  • Muti, M.,. S. Sharma, A. Erdem, and P. Papakonstantinou. 2011. Electrochemical monitoring of nucleic acid hybridization by single-use graphene oxide-based sensor. Electroanalysis 23 (1):272–279. doi:10.1002/elan.201000425.
  • Navratil, R., A. Kotzianova, V. Halouzka, T. Opletal, I. Triskova, L. Trnkova, and J. Hrbac. 2016. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and raman study. Journal of Electroanalytical Chemistry 783:152–160. doi:10.1016/j.jelechem.2016.11.030.
  • Parvez, K., Z.-S. Wu, R. Li, X. Liu, and R. Graf. 2014. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society 136 (16):6083–6091. doi:10.1021/ja5017156.
  • Pokpas, K., N. Jahed, P. G. Baker, and E. I. Iwuoha. 2017. Complexation-based detection of nickel(II) at a graphene-chelate probe in the presence of cobalt and zinc by adsorptive stripping voltammetry. Sensors 17 (8):1711. doi:10.3390/S17081711.
  • Pokpas, K., J. Nazeem, T. Oluwakemi, P. G. Baker, E. I. Iwuoha, and E. I. Iwuoha. 2014a. Nafion-graphene nanocomposite in situ plated bismuth-film electrodes on pencil graphite substrates for the determination of trace heavy metals by anodic stripping voltammetry. International Journal of Electrochemical Science 9 (9):5092–5115. www.electrochemsci.org.
  • Pokpas, K., S. Zbeda, N. Jahed, N. Mohamed, P. G. Baker, E. I. Iwuoha, and E. I. Iwuoha. 2014b. Electrochemically reduced graphene oxide pencil-graphite in situ plated bismuth-film electrode for the determination of trace metals by anodic stripping voltammetry. International Journal of Electrochemical Science 9 (2):736–759. www.electrochemsci.org.
  • Purushothama, H. T., and Y. Arthoba Nayaka. 2017. Electrochemical study of hydrochlorothiazide on electrochemically pre-treated pencil graphite electrode as a sensor. Sensing and Bio-Sensing Research 16:12–18. doi:10.1016/j.sbsr.2017.09.004.
  • Rezaei, B., and E. Rezaei. 2006. Simultaneous determination of trace amounts of nickel, cobalt, and zinc in the wastewater of a galvanic workshop by using adsorptive cathodic stripping voltammetry. Journal of Analytical Chemistry 61 (3):262–265. doi:10.1134/S1061934806030129.
  • Rojas, C., V. Arancibia, M. Gomez, and E. Nagles. 2012. Adsorptive stripping voltammetric determination of cobalt in the presence of nickel and zinc using pyrogallol red as chelating agent. International Journal of Electrochemical Science 7 (2):979–990. www.electrochemsci.org.
  • Saidin, M. I., I. Md Isa, M. Ahmad, N. Hashim, and S. Ab Ghani. 2017. Analysis of trace nickel by square wave stripping voltammetry using chloropalladium(II) complex-modified MWCNTs paste electrode. Sensors and Actuators B: Chemical 240:848–856. doi:10.1016/j.snb.2016.09.059.
  • Scholz, F. 2015. Voltammetric techniques of analysis: The essentials. ChemTexts 1 (4):17. doi:10.1007/s40828-015-0016-y.
  • Shinde, A. D., R. Acharya, and A. V. R. Reddy. 2017. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis methods. Nuclear Engineering and Technology 49 (3):562–568. doi:10.1016/j.net.2016.09.009.
  • Smarzewska, S.,. J. Pokora, A. Leniart, N. Festinger, and W. Ciesielski. 2016. Carbon paste electrodes modified with graphene oxides - Comparative electrochemical studies of thioguanine. Electroanalysis 28 (7):1562–1569. doi:10.1002/elan.201501101.
  • Stihi, C., I. V. Popescu, M. Frontasyeva, C. Radulescu, A. Ene, O. Culicov, I. Zinicovscaia, I. D. Dulama, S. Cucu-Man, R. Todoran, and G. Dima. 2017. Characterization of heavy metal air pollution in Romania using moss biomonitoring, neutron activation analysis, and atomic absorption spectrometry. Analytical Letters 50 (17):2851–2858. doi:10.1080/00032719.2016.1275661.
  • Temerk, Y. M., H. S. M. Ibrahim, and W. Schuhmann. 2016. Square wave cathodic adsorptive stripping voltammetric determination of the anticancer drugs flutamide and irinotecan in biological fluids using renewable pencil graphite electrodes. Electroanalysis 28 (2):372–379. doi:10.1002/elan.201500329.
  • Toh, S. Y., K. S. Loh, S. K. Kamarudin, and W. R. W. Daud. 2014. Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. Chemical Engineering Journal 251:422–434. doi:10.1016/j.cej.2014.04.004.
  • Hummers, W. S. Jr, and R. E. Offeman. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80 (6):1339. doi:10.1021/ja01539a017.
  • Xue, Z., B. Yin, M. Li, H. Rao, H. Wang, X. Zhou, X. Liu, and X. Lu. 2016. Direct electrodeposition of well dispersed electrochemical reduction graphene oxide assembled with nickel oxide nanocomposite and its improved electrocatalytic activity toward 2, 4, 6-trinitrophenol. Electrochimica Acta 192:512–520. doi:10.1016/j.electacta.2016.01.206.
  • Yao, Y., and M. Costa. 2014. Toxicogenomic effect of nickel and beyond. Archives of Toxicology 88 (9):1645–1650. doi:10.1007/s00204-014-1313-8.
  • Zawisza, B., R. Sitko, E. Malicka, E. Talik, Z. Huang, R. Liu, and Y. Kuang. 2013. Graphene oxide as a solid sorbent for the preconcentration of cobalt, nickel, copper, zinc and lead prior to determination by energy-dispersive X-ray fluorescence spectrometry. Analytical Methods 5 (22):6425. doi:10.1039/c3ay41451e.
  • Zhan, F., F. Gao, X. Wang, L. Xie, F. Gao, and Q. Wang. 2016. Determination of lead(II) by adsorptive stripping voltammetry using a glassy carbon electrode modified with β-cyclodextrin and chemically reduced graphene oxide composite. Microchimica Acta 183 (3):1169–1176. doi:10.1007/s00604-016-1754-2.
  • Zhao, L., S. Zhong, K. Fang, Z. Qian, and J. Chen. 2012. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. Journal of Hazardous Materials 239–240:206–212. doi:10.1016/j.jhazmat.2012.08.066.
  • Zhong, W. S., T. Ren, and L. J. Zhao. 2016. Determination of pb (lead), cd (cadmium), cr (chromium), cu (copper), and ni (nickel) in chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. Journal of Food and Drug Analysis 24 (1):46–55. doi:10.1016/j.jfda.2015.04.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.