171
Views
5
CrossRef citations to date
0
Altmetric
Liquid Chromatography

Determination of the Polar Compounds in Vegetable Oil by Ultra-Performance Liquid Chromatography–Quadrupole-Time-of-Flight-Mass Spectrometry with Chemometrics

, , , &
Pages 465-478 | Received 06 Mar 2018, Accepted 28 Apr 2018, Published online: 31 Jan 2019

References

  • Baumann, S., and S. Aronova. 2012. Olive oil characterization using Agilent GC/Q–TOF MS and mass profiler professional software. Agilent Technologies Application Note 5991 0106EN.
  • Boyaci, I. H., H. T. Temiz, H. E. Geniş, E. Acar Soykut, N. N. Yazgan, B. Güven, R. S. Uysal, A. G. Bozkurt, K. İlaslan, O. Torun, and F. C. Dudak Şeker. 2015. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Advances 5 (70):56606–24. doi:10.1039/c4ra12463d.
  • Choe, E., and D. B. Min. 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety 5 (4):169–186. doi:10.1111/j.1541-4337.2006.00009.x.
  • Della Corte, A., G. Chitarrini, I. M. Di Gangi, D. Masuero, E. Soini, F. Mattivi, and U. Vrhovsek. 2015. A rapid LC–MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta 140:52–61. doi:10.1016/j.talanta.2015.03.003.
  • Dobarganes, C., and G. Márquez-Ruiz. 2015. Possible adverse effects of frying with vegetable oils. British Journal of Nutrition 113 (S2):S49–S57. doi:10.1017/S0007114514002347.
  • Fang, G., J. Y. Goh, M. Tay, H. F. Lau, and S. F. Y. Li. 2013. Characterization of oils and fats by 1 H NMR and GC/MS fingerprinting: Classification, prediction and detection of adulteration. Food Chemistry 138 (2–3):1461–1469. doi:10.1016/j.foodchem.2012.09.136.
  • Jung, M. Y., S. H. Yoon, and D. B. Min. 1989. Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. Journal of the American Oil Chemists’ Society 66 (1):118–120. doi:10.1007/BF02661798.
  • Haiyan, Z., D. R. Bedgood, A. G. Bishop, P. D. Prenzler, and K. Robards. 2007. Endogenous biophenol, fatty acid and volatile profiles of selected oils. Food Chemistry 100 (4):1544–1551. doi:10.1016/j.foodchem.2005.12.039.
  • Kim, N., K. Kim, B. Y. Choi, D. H. Lee, Y. S. Shin, K. H. Bang, S. W. Cha, J. W. Lee, H. K. Choi, D. S. Jang, and D. Lee. 2011. Metabolomic approach for age discrimination of panax ginseng using UPLC-Q-tof MS. Journal of Agricultural and Food Chemistry 59 (19):10435–10441. doi:10.1021/jf201718r.
  • Koski, A., S. Pekkarinen, A. Hopia, K. WähäLä, and M. Heinonen. 2003. Processing of rapeseed oil: Effects on sinapic acid derivative content and oxidative stability. European Food Research and Technology 217 (2):110–114. doi:10.1007/s00217-003-0721-4.
  • Kusdiana, D., and S. Saka. 2001. Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methanol. Journal of Chemical Engineering of Japan 34 (3):383–387. doi:10.1252/jcej.34.383.
  • Mahesar, S. A., S. T. H. Sherazi, A. R. Khaskheli, A. A. Kandhro, and S. Uddin. 2014. Analytical approaches for the assessment of free fatty acids in oils and fats. Anal Methods (UK) 6 (14):4956–4963. doi:10.1039/c4ay00344f.
  • Metayer, C., Z. Wang, R. A. Kleinerman, L. Wang, A. V. Brenner, H. Cui, J. Cao, and J. H. Lubin. 2002. Cooking oil fumes and risk of lung cancer in women in rural Gansu, China. Lung Cancer 35 (2):111–117. doi:10.1016/S0169-5002(01)00412-3.
  • Ng, T. T., P. K. So, B. Zheng, and Z. P. Yao. 2015. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry. Analytica Chimica Acta 884:70–76. doi:10.1016/j.aca.2015.05.013.
  • Nichols, K. K., B. M. Ham, J. J. Nichols, C. Ziegler, and K. B. Green Church. 2007. Identification of fatty acids and fatty acid amides in human meibomian gland secretions. Investigative Opthalmology and Visual Science 48 (1):34. doi:10.1167/iovs.06-0753.
  • Paul, S., G. S. Mittal, and M. S. Chinnan. 1997. Regulating the use of degraded oil/fat in deep-fat/oil food frying. Critical Review of Food Science 37 (7):635–662. doi:10.1080/10408399709527793.
  • Patti, G. J., R. Tautenhahn, D. Rinehart, K. Cho, L. P. Shriver, M. Manchester, I. Nikolskiy, C. H. Johnson, N. G. Mahieu, and G. Siuzdak. 2013. A view from above: Cloud plots to visualize global metabolomic data. Analytical Chemistry 85 (2):798–804. doi:10.1021/ac3029745.
  • Pineda, M. M., A. F. Mairal, A. Vercet, and C. Yagüe. 2011. Physicochemical characterization of changes in different vegetable oils (olive and sunflower) under several frying conditions. CyTA Journal of Food 9 (4):301–306. doi:10.1080/19476337.2011.601817.
  • Serino, T. 2012. Detecting contamination in Shochu using the Agilent GC/MSD, mass profiler professional, and sample class prediction models. Agilent Technologies Application Note 5991:0106EN.
  • Shi, T., M. T. Zhu, Y. Chen, X. L. Yan, Q. Chen, X. L. Wu, J. N. Lin, and M.Y. Xie.. 2018. 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils. Food chemistry 242: (1):308–315. doi:10.1016/j.foodchem.2017.09.061.
  • Sinelli, N., L. Cerretani, V. Di Egidio, A. Bendini, and E. Casiraghi. 2010. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity. Food Research International 43 (1):369–375. doi:10.1016/j.foodres.2009.10.008.
  • Tu, A., Z. Du, and S. Qu. 2016. Rapid profiling of triacylglycerols for identifying authenticity of edible oils using supercritical fluid chromatography-quadruple time-of-flight mass spectrometry combined with chemometric tools. Analytical Methods 8 (21):4226–4238. doi:10.1039/c6ay00970k.
  • Zhang, Q., C. Liu, Z. Sun, X. Hu, Q. Shen, and J. Wu. 2012. Authentication of edible vegetable oils adulterated with used frying oil by Fourier transform infrared spectroscopy. Food Chemistry 132 (3):1607–1613. doi:10.1016/j.foodchem.2011.11.129.
  • Zhao, Y. Y., L. Zhang, F. Y. Long, X. L. Cheng, X. Bai, F. Wei, and R. C. Lin. 2013. UPLC-Q-TOF/HSMS/MSE-based metabonomics for adenine-induced changes in metabolic profiles of rat faeces and intervention effects of ergosta-4, 6, 8 (14), 22-tetraen-3-one. Chem-Biology and Interaction 201 (1–3):31–38. doi:10.1016/j.cbi.2012.12.002.
  • Zitouni, M., V. Wewer, P. Dörmann, C. Abdelly, and N. B. Youssef. 2016. Quadrupole time-of-flight mass spectrometry analysis of glycerophospholipid molecular species in the two halophyte seed oils: Eryngium maritimum and Cakile maritima. Food Chemistry 213:319–328. doi:10.1016/j.foodchem.2016.06.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.