354
Views
14
CrossRef citations to date
0
Altmetric
Fluorescence

Determination of Organophosphorus Pesticides in Fortified Tomatoes by Fluorescence Quenching of Cadmium Selenium – Zinc Sulfide Quantum Dots

, &
Pages 729-744 | Received 15 May 2018, Accepted 14 Jun 2018, Published online: 05 Sep 2018

References

  • Abdel-Gawad, H., R. M. Abdelhameed, A. M. Elmesalamy, and B. Hegazi. 2011. Distribution and elimination of 14C-ethion insecticide in chamomile flowers and oil. Phosphorus, Sulfur, and Silicon and the Related Elements 186 (10):2122–34. doi:10.1080/10426507.2011.588506
  • Abdelhameed, R. M., H. Abdel-Gawad, M. Elshahat, and H. E. Emam. 2016. Cu-BTC@cotton composite: Design and removal of ethion insecticide from water. RSC Advances 6 (48):42324–33. doi:10.1039/C6RA04719J
  • Bai, W., C. Zhu, J. Liu, M. Yan, S. Yang, and A. Chen. 2015. Gold nanoparticle–based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Environmental Toxicology and Chemistry 34 (10):2244–9. doi:10.1002/etc.3088
  • Berijani, S., Y. Assadi, M. Anbia, M. R. M. Hosseini, and E. Aghaee. 2006. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection – Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. Journal of Chromatography A 1123 (1):1–9. doi:10.1016/j.chroma.2006.05.010
  • Breus, V. V., C. D. Heyes, and G. U. Nienhaus. 2007. Quenching of CdSe − ZnS core − shell quantum dot luminescence by water-soluble thiolated ligands. The Journal of Physical Chemistry C 111 (50):18589–94. doi:10.1021/jp075848p
  • Chang, M. M. F., I. R. Ginjom, and S. M. Ng. 2017. Single-shot ‘turn-off’ optical probe for rapid detection of paraoxon-ethyl pesticide on vegetable utilising fluorescence carbon dots. Sensors and Actuators B 242 (Supplement C):1050–56. doi:10.1016/j.snb.2016.09.147
  • Chen, X., F. Gong, Z. Cao, W. Zou, and T. Gu. 2018. Highly cysteine-selective fluorescent nanoprobes based on ultrabright and directly synthesized carbon quantum dots. Analytical and Bioanalytical Chemistry 410:2961–70. doi:10.1007/s00216-018-0980-3
  • Cordero, S. R., P. J. Carson, R. A. Estabrook, G. F. Strouse, and S. K. Buratto. 2000. Photo-activated luminescence of CdSe quantum dot monolayers. The Journal of Physical Chemistry B 104 (51):12137–42. doi:10.1021/jp001771s
  • Das, P., and U. J. Krull. 2017. Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. The Analyst 142 (17):3132–5. doi:10.1039/C7AN00624A
  • Davidowski, S. K., C. E. Lisowski, and J. L. Yarger. 2016. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy. Magnetic Resonance in Chemistry 54 (3):234–8. doi:10.1002/mrc.4372
  • de Silva, A. P., H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice. 1997. Signaling recognition events with fluorescent sensors and switches. Chemical Reviews 97 (5):1515–66. doi:10.1021/cr960386p
  • Dierberg, F. E., and R. J. Pfeuffer. 1983. Fate of ethion in canals draining a Florida citrus grove. Journal of Agricultural and Food Chemistry 31 (4):704–9. doi:10.1021/jf00118a007
  • Freeman, R., and I. Willner. 2012. Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews 41 (10):4067–85. doi:10.1039/C2CS15357B
  • Gregory, J. D. 1955. The stability of N-ethylmaleimide and its reaction with sulfhydryl groups. Journal of the American Chemical Society 77 (14):3922–23. doi:10.1021/ja01619a073
  • Haiduc, I. 2001. Thiophosphorus and related ligands in coordination, organometallic and supramolecular chemistry. A personal account. Journal of Organometallic Chemistry 623 (1–2):29–42. doi:10.1016/S0022-328X(00)00677-X
  • He, L. J., X. L. Luo, H. X. Xie, C. J. Wang, X. M. Jiang, and K. Lu. 2009. Ionic liquid-based dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Analytica Chimica Acta 655 (1–2):52–9. doi:10.1016/j.aca.2009.09.044
  • Hong, F., and S. Pehkonen. 1998. Hydrolysis of phorate using simulated environmental conditions: Rates, mechanisms, and product analysis. Journal of Agricultural and Food Chemistry 46 (3):1192–9. doi:10.1021/jf970675u
  • Hong, F., S. O. Pehkonen, and E. Brooks. 2000. Pathways for the hydrolysis of phorate: Product studies by 31P NMR and GC-MS. Journal of Agricultural and Food Chemistry 48 (7):3013–7. doi:10.1021/jf990558u
  • Ji, X., J. Zheng, J. Xu, V. K. Rastogi, T.-C. Cheng, J. J. DeFrank, and R. M. Leblanc. 2005. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. The Journal of Physical Chemistry B 109 (9):3793–9. doi:10.1021/jp044928f
  • Jiménez-Hernández, L., O. Estévez-Hernández, M. Hernández-Sánchez, J. A. Díaz, M. Farías-Sánchez, and E. Reguera. 2016. 3-Mercaptopropionic acid surface modification of Cu-doped ZnO nanoparticles: Their properties and peroxidase conjugation. Colloids and Surfaces A 489 (Supplement C):351–9. doi:10.1016/j.colsurfa.2015.11.010
  • Kim, Y. J., Y. A. Cho, H. S. Lee, Y. T. Lee, S. J. Gee, and B. D. Hammock. 2003. Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Analytica Chimica Acta 475 (1–2):85–96. doi:10.1016/S0003-2670(02)01037-1
  • Li, H., and F. Qu. 2007. Synthesis of CdTe quantum dots in sol − gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides. Chemistry of Materials 19 (17):4148–54. doi:10.1021/cm0700089
  • Liu, G. D., and Y. H. Lin. 2005. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Analytical Chemistry 77 (18):5894–901. doi:10.1021/ac0507911
  • Luan, W., H. Yang, Z. Wan, B. Yuan, X. Yu, and S.-T. Tu. 2012. Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence probe for lead(II). Journal of Nanoparticle Research 14 (3):762. doi:10.1007/s11051-012-0762-3
  • Nsibande, S. A., and P. B. C. Forbes. 2016. Fluorescence detection of pesticides using quantum dot materials – A review. Analytica Chimica Acta 945 (Supplement C):9–22. doi:10.1016/j.aca.2016.10.002
  • Pang, S., T. P. Labuza, and L. He. 2014. Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. The Analyst 139 (8):1895–901. doi:10.1039/C3AN02263C
  • Pardo-Yissar, V., E. Katz, J. Wasserman, and I. Willner. 2003. Acetylcholine esterase-labeled CdS nanoparticles on electrodes: Photoelectrochemical sensing of the enzyme inhibitors. Journal of the American Chemical Society 125 (3):622–3. doi:10.1021/ja028922k
  • Smolen, J. M., and A. T. Stone. 1997. Divalent metal ion-catalyzed hydrolysis of phosphorothionate ester pesticides and their corresponding oxonates. Environmental Science & Technology 31 (6):1664–73. doi:10.1021/es960499q
  • Sun, Q., Q. Yao, Z. Sun, T. Zhou, D. Nie, G. Shi, and L. Jin. 2011. Determination of parathion-methyl in vegetables by fluorescent-labeled molecular imprinted polymer. Chinese Journal of Chemistry 29 (10):2134–40. doi:10.1002/cjoc.201180370
  • Suo, B., X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo. 2010. Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties. Materials Chemistry and Physics 119 (1–2):237–42. doi:10.1016/j.matchemphys.2009.08.054
  • Tyrakowski, C. M., and P. T. Snee. 2014. Ratiometric CdSe/ZnS quantum dot protein sensor. Analytical Chemistry 86 (5):2380–6. doi:10.1021/ac4040357
  • Wei, J., J. Cao, H. Hu, Q. Yang, F. Yang, J. Wan, H. Su, C. He, P. Li, and Y. Wang. 2017. Sensitive and selective detection of oxo-form organophosphorus pesticides based on CdSe/ZnS quantum dots. Molecules 22 (9):1421. doi:10.3390/molecules22091421
  • Wu, S., D. Li, J. Wang, Y. Zhao, S. Dong, and X. Wang. 2017. Gold nanoparticles dissolution based colorimetric method for highly sensitive detection of organophosphate pesticides. Sensors and Actuators B 238 (Supplement C):427–33. doi:10.1016/j.snb.2016.07.067
  • Xiao, S. J., Z. J. Chu, X. J. Zhao, Z. B. Zhang, and Y. H. Liu. 2017. Off-on-off detection of the activity of acetylcholine esterase and its inhibitors using MoOx quantum dots as a photoluminescent probe. Microchimica Acta 184 (12):4853–60. doi:10.1007/s00604-017-2519-2
  • Xie, R. G., U. Kolb, J. X. Li, T. Basche, and A. Mews. 2005. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. Journal of the American Chemical Society 127 (20):7480–8. doi:10.1021/ja042939g
  • Xue, G., Z. Yue, Z. Bing, T. Yiwei, L. Xiuying, and L. Jianrong. 2016. Highly-sensitive organophosphorus pesticide biosensors based on CdTe quantum dots and bi-enzyme immobilized eggshell membranes. The Analyst 141 (3):1105–11. doi:10.1039/C5AN02163D
  • Yan, X., H. Li, T. Hu, and X. Su. 2017. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters. Biosensors and Bioelectronics 91 (Supplement C):232–7. doi:10.1016/j.bios.2016.11.058
  • Yan, X., H. Li, X. Han, and X. Su. 2015. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosensors and Bioelectronics 74: 277–83. doi:10.1016/j.bios.2015.06.020
  • Zeng, B., G. Palui, C. Zhang, N. Zhan, W. Wang, X. Ji, B. Chen, and H. Mattoussi. 2018. Characterization of the ligand capping of hydrophobic CdSe–ZnS quantum dots using NMR spectroscopy. Chemistry of Materials 30 (1):225–38. doi:10.1021/acs.chemmater.7b04204
  • Zhang, K., Q. Mei, G. Guan, B. Liu, S. Wang, and Z. Zhang. 2010. Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Analytical Chemistry 82 (22):9579–86. doi:10.1021/ac102531z
  • Zhou, J.-W., X.-M. Zou, S.-H. Song, and G.-H. Chen. 2018. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. Journal of Agricultural and Food Chemistry 66 (6):1307–19. doi:10.1021/acs.jafc.7b05119

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.