193
Views
5
CrossRef citations to date
0
Altmetric
Electrochemistry

Amperometric Determination of Hydrogen Peroxide and its Mathematical Simulation for Horseradish Peroxidase Immobilized on a Sonogel Carbon Electrode

, , &
Pages 1215-1235 | Received 11 Aug 2018, Accepted 23 Sep 2018, Published online: 20 Dec 2018

References

  • Achi, F., S. Bourouina-Bacha, M. Bourouina, and A. Amine. 2015. Mathematical model and numerical simulation of inhibition based biosensor for the detection of Hg(II). Sensors and Actuatuators B Chemical Journal 207:413–423. doi:10.1016/j.snb.2014.10.033
  • Ahammad, A. J. S. 2013. Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. Biosens and Bioelectronics 9:11. doi:10.4172/2155-6210.S9-001
  • Alvarez-Lcaza, M., and U. Bilitewski. 1993. Mass production of biosensors. Analytical Chemistry 65:525–533. doi:10.1021/ac00059a001
  • Ašeris, V., R. Baronas, and K. Petrauskas. 2016. Computational modelling of three-layered biosensor based on chemically modified electrode. Computational and Applied Mathematics 35 (2):405–421. doi:10.1007/s40314-014-0197-9
  • Attar, A., A. Amine, F. Achi, S. B. Bacha, M. Bourouina, L. Cubillana-Aguilera, J. M. Palacios-Santander, A. Baraket, and A. Errachid. 2016. A novel amperometric inhibition biosensor based on HRP and gold sononanoparticles immobilised onto Sonogel-Carbon electrode for the determination of sulphides. International Journal of Environmental Analytical Chemistry 96 (6):515–529. doi:10.1080/03067319.2016.1172216
  • Bacha, S., A. Bergel, and M. Comtat. 1995. Transient response of multilayer electroenzymic biosensors. Analytical Chemistry 67 (10):1669–1678. doi:10.1021/ac00106a004
  • Bacha, S., M. Montagné, and A. Bergel. 1996. Modeling mass transfer with enzymatic reaction in electrochemical multilayer microreactors. AIChE Journal 42 (10):2967–2976. doi:10.1002/aic.690421024
  • Bartlett, P. N., and K. F. E. Pratt. 1993. Modelling of processes in enzyme electrodes. Biosensors and Bioelectronics 8 (9–10):451–462. doi:10.1016/0956-5663(93)80030-S
  • Bartlett, P. N., and K. F. E. Pratt. 1995. Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes part I: Redox mediator entrapped within the film. Journal of Electroanalytical Chemistry 397(1–2):61–78. doi:10.1016/0022-0728(95)04236-7
  • Bensana, A., F. Achi, A. Bouguettoucha, and D. Chebli. 2018. Theoretical analysis and experimental investigation of the physicochemical parameters of amperometric biosensor for phenols detection. Materials and Biomaterials Science 1:16–18.
  • Bergel, A., and M. Comtat. 1984. Theoretical evaluation of transient responses of an amperometric enzyme electrode. Analytical Chemistry 56 (14):2904–2909. doi:10.1021/ac00278a064
  • Blaedel, W. J., T. R. Kissel, and R. C. Boguslaski. 1972. Kinetic behavior of enzymes immobilized in artificial membranes. Analytical Chemistry 44 (12):2030–2037. doi:10.1021/ac60320a021
  • Britz, D., R. Baronas, E. Gaidamauskait, and F. Ivanauskas. 2009. Further comparisons of finite difference schemes for computational modelling of biosensors. Nonlinear Anal-Model 14:419–433.
  • Cambiaso, A., L. Delfino, M. Grattarola, G. Verreschi, D. Ashworth, A. Maines, and P. Vadgama. 1996. Modelling and simulation of a diffusion limited glucose biosensor. Sensors Actuators B and Chemical Journal 33 (1–3):203–207. doi:10.1016/0925-4005(96)80099-2
  • Chang, Y., J. Qiao, Q. Liu, L. Shangguan, X. Ma, S. Shuang, and C. Dong. 2008. Electrochemical behavior of hydrogen peroxide at a glassy carbon electrode modified with nickel hydroxide–decorated multiwalled carbon nanotubes. Analytical Letters 41 (17):3147–3160. doi:10.1080/00032710802462982
  • Chaubey, A., and B. D. Malhotra. 2002. Mediated biosensors. Biosensors and Bioelectronics 17 (6–7):441–456. doi:10.1016/S0956-5663(01)00313-X
  • Comtat, M., H. Durliat, A. Bergel, S. Bacha, and M. Montagné. 1993. Theoretical and experimental aspects for improvement of electrochemical biosensors by various kinds of immobilization. In Uses of immobilized biological compounds, ed. G. G. Guilbault and M. Mascini, 35–45. NATO ASI Series. Norwell, MA: Kluwer Academic Publishers.
  • Cooper, J. M., M. Alvarez-Icaza, C. J. McNeil, and P. N. Bartlett. 1989. A kinetic study of an amperometric enzyme electrode based on immobilised cytochrome C peroxidase. Journal of Electroanalytical Chemistry 272 (1–2):57–70. doi:10.1016/0022-0728(89)87068-8
  • Crank, J. 1975. The mathematics of diffusion. 2nd ed. Bristol: Oxford University Press.
  • Do, T. Q. N., M. Varničić, R. Hanke-Rauschenbach, T. Vidaković-Koch, and K. Sundmacher. 2014. Mathematical modeling of a porous enzymatic electrode with direct electron transfer mechanism. Electrochimica Acta 137:616–626. doi:10.1016/j.electacta.2014.06.031
  • Galceran, J., S. L. Taylor, and P. N. Bartlett. 2001. Modelling the steady-state current at the inlaid disc microelectrode for homogeneous mediated enzyme catalysed reactions. Journal of Electroanalytical Chemistry 506 (2):65–81. doi:10.1016/S0022-0728(01)00503-4
  • Gros, P., and A. Bergel. 1995. Improved model of a polypyrrole glucose oxidase modified electrode. Journal of Electroanalytical Chemistry 386 (1–2):65–73. doi:10.1021/ac60352a006
  • Guoa, C., F. Huac, C. M. Li, and P. K. Shen. 2008. Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor. Biosensors and Bioelectronics 24 (4):819–824. doi:10.1016/j.bios.2008.07.007
  • Hall, S. B., E. A. Khudaish, and A. L. Hart. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochimca Acta 43 (14–15):2015–2024. doi:10.1016/S0013-4686(97)00125-4
  • Hamtak, M., L. Fotouhi, M. Hosseini, and M. R. Ganjali. 2018. Sensitive nonenzymatic electrochemiluminescence determination of hydrogen peroxide in dental products using a polypyrrole/polyluminol/titanium dioxide nanocomposite. Analytical Letters. doi:10.1080/00032719.2018.1483940
  • Hoffman, J. D., and S. Frankel. 1992. Numerical methods for engineers and scientists. 2nd ed. New York: McGraw-Hill.
  • Kulys, J. J. 1981. Development of new analytical systems based on biocatalysers. Enzyme and Microbiol Technology 3 (4):344–352. doi:10.1016/0141-0229(81)90012-0
  • Kulys, J. J., and R. Baronas. 2006. Modelling of amperometric biosensors in the case of substrate inhibition. Sensors 6 (11):1513–1522. doi:10.1007/s10910-009-9581-x
  • Kulys, J. J., V. V. Sorochinskii, and R. A. Vidziunaite. 1986. Transient response of bienzyme electrodes. Biosensors 2 (3):135–146. doi:10.1016/0265-928X(86)80001-3
  • Lei, C. X., L. P. Long, and Z. L. Cao. 2005. An H2O2 biosensor based on immobilization of horseradish peroxidase labeled Nano-Au in silica Sol-Gel/alginate composite film. Analytical Letters 38 (11):1721–1734. doi:10.1080/00032710500207762
  • Leypoldt, J. K., and D. A. Gough. 1984. Model of a two-substrate enzyme electrode for glucose. Analytical Chemistry 56 (14):2896–2904. doi:10.1021/ac00278a063
  • Liang, J., M. Wei, Q. Wang, Z. Zhao, A. Liu, Z. Yu, and Y. Tian. 2018. Sensitive electrochemical determination of hydrogen peroxide using copper nanoparticles in a polyaniline film on a glassy carbon electrode. Analytical Letters 51 (4):512–522. doi:10.1080/00032719.2017.1343832
  • Loghambal, S., and L. Rajendran. 2010. Mathematical modeling of diffusion and kinetics in amperometric immobilized enzyme electrodes. Electrochimca Acta 55 (18):5230–5238. doi:10.1016/j.electacta.2010.04.050
  • Lyons, M. E. G. 2006. Modelling the transport and kinetics of electroenzymes at the electrode/solution interface. Sensors 6 (12):1765–1790. doi:10.3390/s6121765
  • Lyons, M. E. G., C. H. Lyons, C. Fitzgerald, and P. N. Bartlett. 1994. Conducting-polymer-based electrochemical sensors: theoretical analysis of the transient current response. Journal of Electroanalytical Chemistry 365(1–2):29–34. doi:10.1016/0022-0728(93)03057-V
  • Madhura, T.R., P. Viswanathan, G. Gnana kumar, and R. Ramaraj. 2017. Nanosheet-like manganese ferrite grown on reduced graphene oxide for non-enzymatic electrochemical sensing of hydrogen peroxide. Journal of Electroanalytical Chemistry 792:15–22. doi:10.1016/j.jelechem.2017.03.014
  • Martens, N., and E. A. H. Hall. 1994. Model for an immobilized oxidase enzyme electrode in the presence of two oxidants. Analytical Chemistry 66 (17):2763–2770. doi:10.1021/ac00089a026
  • Martens, N., A. Hindle, and E. A. H. Hall. 1995. An assessment of mediators as oxidants for glucose oxidase in the presence of oxygen. Biosensors and Bioelectronics 10 (3–4):393–403. doi:10.1016/0956-5663(95)96857-U
  • Mell, L. D., and J. T. Maloy. 1975. Model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system. Analytical Chemistry 47 (2):299–307. doi:10.1021/ac60352a006
  • Muller, J., and T. Zwing. 1982. An experimental verification of the theory of diffusion limitation of immobilized enzymes. Biochimca Biophysica Acta 705 (1):117–123. doi:10.1016/0167-4838(82)90343-0
  • Norazriena, Y., R. Perumal, S. M. Muhammad, P. Alagarsamy, L. H. Wah, and H. N. Ming. 2017. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosensors and Bioelectronics 87:1020–1028. doi:10.1016/j.bios.2016.09.045.
  • Patre, B. M., and V. G. Sangam. 2007. Mathematical model of an amperometric biosensor for the design of an appropriate instrumentation system. Journal of Medical Engineering & Technology 31 (5):351–360. doi:10.1080/03091900600926898
  • Puida, M., A. Malinauskas, and F. Ivanauskas. 2011. Modeling of electrocatalysis at conducting polymer modified electrodes: nonlinear current-concentration profiles. Journal of Mathematical Chemistry 49 (6):1151–1162. doi:10.1007/s10910-011-9802-y
  • Qu, J., Y. Dong, T. Lou, and X. Du. 2014. Determination of hydrogen peroxide using a novel sensor based on Fe3O4 magnetic nanoparticles. Analytical Letters 47 (11):1797–1807. doi:10.1080/00032719.2014.888733
  • Rahamathunissa, G., P. Manisankar, L. Rajendran, and K. Venugopal. 2011. Modeling of nonlinear boundary value problems in enzyme-catalyzed reaction diffusion processes. Journal of Mathematical Chemistry 49 (2):457–474. doi:10.1007/s10910-010-9752-9
  • Rinken, T. 2003. Determination of kinetic constants and enzyme activity from a biosensor transient signal. Analytical Letters 36 (8):1535–1545. doi:10.1081/AL-120021535
  • Romero, M. R., A. M. Baruzzi, and F. Garay. 2012. Mathematical modeling and experimental results of a sandwich-type amperometric biosensor. Sensors and Actuators B: Chemical Journal 162 (1):284–291. doi:10.1016/j.snb.2011.12.079
  • Schulmeister, T., and D. Pfeiffer. 1993. Mathematical modelling of amperometric enzyme electrodes with perforated membranes. Biosensors and Bioelectronics 8 (2):75–79. doi:10.1016/0956-5663(93)80055-T
  • Schulmeister, T., and F. Scheller. 1985. Mathematical treatment of concentration profiles and anodic current for amperometric enzyme electrodes. Analytica Chimica Acta 171:111–118. doi:10.1016/S0003-2670(00)85022-9
  • Sheppard, N. F., D. J. Mears, and A. Guiseppi-Elie. 1996. Model of an immobilized enzyme conductimetric urea biosensor. Biosensors and Bioelectronics 11 (10):967–979. doi:10.1016/0956-5663(96)87656-1
  • Sheppard, N. F., R. C. Tucker, and C. Wu. 1993. Electrical conductivity measurements using microfabricated interdigitated electrodes. Analytical Chemistry 65 (9):1199–1202. doi:10.1021/ac00057a0161
  • Somasundrum, M., A. Tongta, M. Tanticharoen, and K. Kirtikara. 1997. A kinetic model for the reduction of enzyme-generated H2O2 at a metal-dispersed conducting polymer film. Journal of Electroanalytical Chemistry 440 (1–2):259–264. doi:10.1016/S0022-0728(97)80064-2
  • Sorochinskii, V. V., and B. I. Kurganov. 1996. Steady-state kinetics of cyclic conversions of substrate in amperometric bienzyme sensors. Biosensors and Bioelectronics 11 (3):225–238. doi:10.1016/0956-5663(96)88409-0
  • Stewart, P. S. 2003. Diffusion in biofilms. Journal of Bacteriology 185 (5):1485–1491. doi:10.1128/JB.185.5.1485-1491. 2003
  • van Stroe-Biezen, S. A. M., F. M. Everaerts, L. J. J. Janssen, and R. A. Tacken. 1993. Diffusion coefficients of oxygen, hydrogen peroxide and glucose in a hydrogel. Analytica Chimica Acta 273 (1–2):553–560. doi:10.1016/0003-2670(93)80202-V
  • Yokoyama, K., and Y. Kayanuma. 1998. Cyclic voltammetric simulation for electrochemically mediated enzyme reaction and determination of enzyme kinetic constants. Analytical Chemistry 70 (16):3368–3376. doi:10.1021/ac9711807
  • Zhang, G., N. Yang, Y. Ni, J. Shen, W. Zhao, and X. Huang. 2011. A H2O2 electrochemical biosensor based on biocompatible pnipam-g-P (NIPAM-co-St) nanoparticles and multi-walled carbon nanotubes modified glass carbon electrode. Sensors and Actuators B: Chemistry Journal 158 (1):130–137. doi:10.1016/j.snb.2011.05.055
  • Zhou, K., Y. Zhu, X. Yang, J. Luo, C. Li, and S. Luan. 2010. A novel hydrogen peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites. Electrochimica Acta 55 (9):3055–3060. doi:10.1016/j.electacta.2010.01.035
  • Zong, S., Y. Cao, and H. Ju. 2007. Amperometric biosensor for hydrogen peroxide based on myoglobin doped multiwalled carbon nanotube enhanced grafted collagen matrix. Analytical Letters 40 (8):1556–1568. doi:10.1080/00032710701380442

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.