435
Views
12
CrossRef citations to date
0
Altmetric
Food Analysis

Indirect electrochemical determination of antioxidant capacity with hexacyanoferrate(III) reduction using a gold nanoparticle-coated o-phenylenediamine-aniline copolymer electrode

, , , &
Pages 1282-1297 | Received 17 Aug 2018, Accepted 10 Oct 2018, Published online: 14 Jan 2019

References

  • Apak, R., K. Güçlü, M. Özyürek, and S. E. Çelik. 2008. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta 160 (4):413–9. doi:10.1007/s00604-007-0777-0.
  • Apak, R., M. Özyürek, K. Güçlü, and E. Çapanoğlu. 2016. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry 64 (5):997–1027. doi:10.1021/acs.jafc.5b04739.
  • Barroso, M. F., N. de-los-Santos-Álvarez, C. Delerue-Matos, and M. B. P. P. Oliveira. 2011. Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: Electrochemical (bio)sensors. Biosensors and Bioelectronics 30 (1):1–12. doi:10.1016/j.bios.2011.08.036.
  • Campanella, L., A. Bonanni, D. Bellantoni, G. Favero, and M. Tomassetti. 2004. Comparison of fluorimetric, voltammetric and biosensor methods for the determination of total antioxidant capacity of drug products containing acetylsalicylic acid. Journal of Pharmaceutical and Biomedical Analysis 36 (1):91–99. doi:10.1016/j.jpba.2004.06.002.
  • Chen, R. L. C., C. H. Lin, C. Y. Chung, and T. J. Cheng. 2005. Determination of tannin in green tea infusion by flow-injection analysis based on quenching the fluorescence of 3-aminophthalate. Journal of Agricultural and Food Chemistry 53 (22):8443–6. doi:10.1021/jf051077f.
  • Ganjali, M. R., F. G. Nejad, H. Beitollahi, S. Jahani, M. Rezapour, and B. Larijani. 2017. Highly sensitive voltammetric sensor for determination of ascorbic acid using graphite screen printed electrode modified with ZnO/Al2O3 nanocomposite. International Journal of Electrochemical Science 12:3231–40. doi:10.20964/2017.04.07.
  • Guo, S., D. Wen, Y. Zhai, S. Dong, and E. Wang. 2010. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Na 4 (7): 3959–68. doi:10.1021/nn100852h.
  • Güçlü, K., M. Altun, M. Özyürek, S. E. Karademir, and R. Apak. 2006. Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology 41 (s1): 76–85. doi:10.1111/j.1365-2621.2006.01347.x.
  • Hsu, S. C., H. T. Cheng, P. X. Wu, C. J. Weng, K. S. Santiago, and J. M. Yeh. 2017. Electrochemical sensor constructed using a carbon paste electrode modified with mesoporous silica encapsulating PANI chains decorated with GNPs for detection of ascorbic acid. Electrochimica Acta 238: 246–56. doi:10.1016/j.electacta.2017.04.021.
  • Hu, Y., Z. J. Pan, W. Liao, J. Li, P. Gruget, D. D. Kitts, and X. Lu. 2016. Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy. Food Chemistry 202:254–61. doi:10.1016/j.foodchem.2016.01.130.
  • Khaleghi, F., Z. Arab, V. K. Gupta, M. Z. Ganjali, P. Norouzi, N. Atar, and M. L. Yola. 2016. Fabrication of novel electrochemical sensor for determination of vitamin C in the presence of vitamin B9 in food and pharmaceutical samples. Journal of Molecular Liquids 221:666–72. doi:10.1016/j.molliq.2016.06.061.
  • Kumar, S. A., L. P. Hsun, and C. S. Ming. 2009. Electrochemical analysis of H2O2 and nitrite using copper nanoparticles/poly(o-phenylenediamine) film modified glassy carbon electrode. Journal of the Electrochemical Society 156:E118–23. doi:10.1149/1.3129604.
  • Lahav, M., E. Katz, A. Doron, F. Patolsky, and I. Willner. 1999. Photochemical imprint of molecular recognition sites in monolayers assembled on Au electrodes. Journal of the American Chemical Society 121 (4):862–863. doi:10.1021/ja983330g.
  • Lu, X., J. Wang, H. M. Al-Qadiri, C. F. Ross, J. R. Powers, J. Tang, and B. A. Rasco. 2011. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry 129 (2):637–44. doi:10.1016/j.foodchem.2011.04.105.
  • Magarelli, G., J. G. Da Silva, I. A. de Sousa Filho, I. S. D. Lopes, J. R. De Souza, L. V. Hoffmann, and C. S. P. de Castro. 2013. Development and validation of a voltammetric method for determination of total phenolic acids in cotton cultivars. Microchemical Journal 109:23–8. doi:10.1016/j.microc.2012.05.014.
  • Ng, K. L., G. H. Tan, and S. M. Khor. 2017. Graphite nanocomposites sensor for multiplex detection of antioxidants in food. Food Chemistry 237:912–20. doi:10.1016/j.foodchem.2017.06.029.
  • Niu, X., W. Yang, H. Guo, J. Ren, and J. Gao. 2013. Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. Biosensors and Bioelectronics 41:225–231. doi:10.1016/j.bios.2012.08.025.
  • Petković, B. B., D. Stanković, M. Milčić, S. P. Sovilj, and D. Manojlović. 2015. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples. Talanta 132:513–9. doi:10.1016/j.talanta.2014.09.025.
  • Ren, W., H. Q. Luo, and N. B. Li. 2006. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosensors and Bioelectronics 21 (7):1086–92. doi:10.1016/j.bios.2005.04.002.
  • Rizz, G. P. 2006. Formation of strecker aldehydes from polyphenol-derived quinones and α-amino acids in a nonenzymic model system. Journal of Agricultural and Food Chemistry 54:1893–7. doi:10.1021/jf052781z.
  • Robards, K., P. D. Prenzler, G. Tucker, P. Swatsıtang, and W. Glover. 1999. Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry 66 (4):401–436. doi:10.1016/S0308-8146(99)00093-X.
  • Sağlam, Ş., A. Üzer, Y. Tekdemir, E. Erçağ, and R. Apak. 2015. Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly(o-phenylenediamine–aniline) film modified glassy carbon electrode. Talanta 139:181–8. doi:10.1016/j.talanta.2015.02.059.
  • Scott, A. I. 1965. Oxidative coupling of phenolic compounds. Quarterly Reviews, Chemical Society 19 (1):1–35. doi:10.1039/QR9651900001.
  • Šeruga, M., I. Novak, and L. Jakobek. 2011. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chemistry 124(3):1208–16. doi:10.1016/j.foodchem.2010.07.047.
  • Shao, X., L. Lv, T. Parks, H. Wu, C. T. Ho, and S. Sang. 2010. Quantitative analysis of ginger components in commercial products using liquid chromatography with electrochemical array detection. Journal of Agricultural and Food Chemistry 58 (24):12608–14. doi:10.1021/jf1029256.
  • Simondsen, R. P., P. C. Weber, F. R. Salemme, and G. Tollin. 1982. Transient kinetics of electron transfer reactions of flavodoxin: Ionic strength dependence of semiquinone oxidation by cytochrome c, ferricyanide, and ferric ethylenediaminetetraacetic acid and computer modeling of reaction complexes. Biochemistry 21 (25):6366–75. doi:10.1021/bi00268a008.
  • Sochor, J., J. Dobes, O. Krystofova, B. Ruttkay-Nedecky, P. Babula, M. Pohanka, T. Jurikova, O. Zitka, V. Adam, B. Klejdus, and R. Kizek. 2013. Electrochemistry as a tool for studying antioxidant properties. International Journal of Electrochemical Science 8:8464–89. http://www.electrochemsci.org/papers/vol8/80608464.pdf
  • Souza, L. P., F. Calegari, A. J. G. Zarbin, L. H. Marcolino-Júnior, and M. F. Bergamini. 2011. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. Journal of Agricultural and Food Chemistry 59 (14):7620–25. doi:10.1021/jf2005589.
  • Spearman’s correlation. http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf (accessed August 10, 2018).
  • Swinehart, J. H. 1967. The kinetics of the hexacyanoferrate(III)-sulphite reaction. Journal of Inorganic and Nuclear Chemistry 29 (9):2313–2320. doi:10.1016/0022-1902(67)80286-0.
  • Tufan, A. N., S. Baki, K. Güçlü, M. Özyürek, and R. Apak. 2014. A novel differential pulse voltammetric (DPV) method for measuring the antioxidant capacity of polyphenols-reducing cupric neocuproine complex. Journal of Agricultural and Food Chemistry 62 (29):7111–7. doi:10.1021/jf5017797.
  • Vinson, J. A., L. Zubik, P. Bose, N. Samman, and J. Proch. 2005. Dried fruits: Excellent in vitro and in vivo antioxidants. Journal of the American College of Nutrition 24 (1):44–50. doi:10.1080/07315724.2005.10719442.
  • Wang, C., R. Yuan, Y. Chai, S. Chen, F. Hu, and M. Zhang. 2012. Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. Analytica Chimica Acta 741:15–20. doi:10.1016/j.aca.2012.06.045.
  • Yola, M. L., C. Göde, and N. Atar. 2017. Determination of rutin by CoFe2O4 nanoparticles ionic liquid nanocomposite as a voltammetric sensor. Journal of Molecular Liquids 246:350–3. doi:10.1016/j.molliq.2017.09.072.
  • Yola, M. L., V. K. Gupta, T. Eren, A. E. Şen, and N. Atar. 2014. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochimica Acta 120:204–11. doi:10.1016/j.electacta.2013.12.086.
  • Zar, J. H. 1972. Significance testing of the spearman rank correlation coefficient. Journal of American Statistical Association 67 (339):578–580. https://www.jstor.org/stable/2284441

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.