434
Views
90
CrossRef citations to date
0
Altmetric
Electrochemistry

Voltammetric Determination of Bisphenol A in Water and Juice Using a Lanthanum (III)-Doped Cobalt (II,III) Nanocube Modified Carbon Screen-Printed Electrode

, &
Pages 1432-1444 | Received 22 Sep 2018, Accepted 03 Nov 2018, Published online: 24 Dec 2018

References

  • Abu-Zied, B. M., S. M. Bawaked, S. A. Kosa, and W. Schwieger. 2015. Effect of Pr, Sm, and Tb doping on the morphology, crystallite size, and N2O decomposition activity of Co3O4 nanorods. Journal of Nanomaterials 16:1–432.
  • Adoamnei, E., J. Mendiola, F. Vela-Soria, M. F. Fernández, N. Olea, N. Jørgensen, S. H. Swan, and A. M. Torres-Cantero. 2018. Urinary bisphenol a concentrations are associated with reproductive parameters in young men. Environmental Research 161:122–128.
  • Bard, A. J., and L. R. Faulkner. 1980. Electrochemical methods. John Wiley and Sons: New York.
  • Beitollahi, H., and F. Garkani Nejad. 2018. Voltammetric determination of vitamin B6 (pyridoxine ) at a graphite screen-printed electrode modified with graphene oxide/Fe3O4@SiO2 nanocomposite. Russian Chemical Bulletin 67(2):238–242.
  • Beitollahi, H., G. Dehghannoudeh, H. M. Moghaddam, and H. Forootanfar. 2017. A sensitive electrochemical DNA biosensor for anticancer drug topotecan based on graphene carbon paste electrode. Journal of the Electrochemical Society 164 (12):H812–H817.
  • Beitollahi, H., Z. Dourandish, M. R. Ganjali, and S. Shakeri. 2018b. Voltammetric determination of dopamine in the presence of tyrosine using graphite screen-printed electrode modified with graphene quantum dots. Ionics 2018:1–9.
  • Beitollahi, H., and F. Garkani Nejad. 2016. Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis 28(9):2237–2244.
  • Beitollahi, H., F. G. Nejad, and S. Shakeri. 2017. GO/Fe3O4@SiO2 core–shell nanocomposite-modified graphite screen-printed electrode for sensitive and selective electrochemical sensing of dopamine and uric acid. Analytical Methods 9(37):5541–5549.
  • Bobrowski, A., M. Maczuga, A. Królicka, E. Konstanteli, C. Sakellaropoulou, and A. Economou. 2017. Determination of copper (II) through anodic stripping voltammetry in tartrate buffer using an antimony film screen-printed carbon electrode. Analytical Letters 50 (18):2920–2936.
  • da Silva, C. T. P., F. R. Veregue, L. W. Aguiar, J. G. Meneguin, M. P. Moisés, S. L. Fávaro, E. Radovanovic, E. M. Girotto, and A. W. Rinaldi. 2016. AuNp@MOF composite as electrochemical material for determination of bisphenol a and its oxidation behavior study. New Journal of Chemistry 40 (10):8872–8877.
  • Ganjali, M. R., H. Beitollahi, R. Zaimbashi, S. Tajik, M. Rezapour, and B. Larijani. 2018. Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite. International Journal of Electrochemical Science 13:2519–2529.
  • Ghanam, A., A. A. Lahcen, and A. Amine. 2017. Electroanalytical determination of bisphenol A: investigation of electrode surface fouling using various carbon materials. Journal of Electroanalytical Chemistry 789:58–66.
  • Hassan, R. Y. A., Sultan, M. A. M. M. A., El‐Alamin, M. A. Atia, and H. Y. Aboul, ‐Enein. 2017. A disposable carbon nanotubes‐screen printed electrode (CNTs‐SPE) for determination of the antifungal agent posaconazole in biological samples. Electroanalysis 29(3):843–849.
  • Ibáñez-Redín, G., D. Wilson, D. Gonçalves, and O. N. Oliveira. 2018. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. Journal of Colloid and Interface Science 515 (2018):101–108.
  • Jahani, S., and H. Beitollahi. 2016. Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen‐printed electrodes. Electroanalysis 28(9):2022–2028.
  • Khairy, M., B. G. Mahmoud, and C. E. Banks. 2018. Simultaneous determination of codeine and its co-formulated drugs acetaminophen and caffeine by utilising cerium oxide nanoparticles modified screen-printed electrodes. Sensors and Actuators B: Chemical 259:142–154.
  • Le Fol, V., S. Aït-Aïssa, M. Sonavane, J.-M. Porcher, P. Balaguer, J.-P. Cravedi, D. Zalko, and F. Brion. 2017. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. Ecotoxicology and Environmental Safety 142:150–156.
  • Li, H.-C., Y.-J. Zhang, X. Hu, W.-J. Liu, J.-J. Chen, and H.-Q. Yu. 2018. Metal–organic framework templated Pd@PdO–Co3O4 nanocubes as an efficient bifunctional oxygen electrocatalyst. Advanced Energy Materials 8(11):1702734.
  • Li, Y., X. Zhai, X. Liu, L. Wang, H. Liu, and H. Wang. 2016. Electrochemical determination of bisphenol a at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–369.
  • Liao, Q., N. Li, S. Jin, G. Yang, and C. Wang. 2015. All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9(5):5310–5317.
  • Lin, Y., K. Liu, C. Liu, L. Yin, Q. Kang, L. Li, and B. Li. 2014. Electrochemical sensing of bisphenol a based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochimica Acta 133:492–500.
  • Liu, G., Z. Chen, X. Jiang, D.-Q. Feng, J. Zhao, D. Fan, and W. Wang. 2016. In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensors and Actuators B: Chemical 228:302–307.
  • Liu, R., Y. J. Tan, T. Zhong, and C. Lei. 2018. Determination of antimony (III) by differential pulse voltammetry using a gold nanoparticle–ionic liquid–graphene-modified selenium-doped carbon paste electrode. Analytical Letters 51 (15):2351–2361.
  • Lu, X. C., L. Song, T. T. Ding, Y. L. Lin, and C. X. Xu. 2017. CuS–MWCNT based electrochemical sensor for sensitive detection of bisphenol A. Russian Journal of Electrochemistry 53 (4):366–373. doi:10.1134/s1023193517040073.
  • Mazzotta, E., C. Malitesta, and E. Margapoti. 2013. Direct electrochemical detection of bisphenol a at PEDOT-modified glassy carbon electrodes. Analytical and Bioanalytical Chemistry 405 (11):3587–3592.
  • Mu, J., L. Zhang, M. Zhao, and Y. Wang. 2013. Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. Journal of Molecular Catalysis A: Chemical 378:30–37.
  • Muhammad, A., R. Hajian, N. A. Yusof, N. Shams, J. Abdullah, P. M. Woi, and H. Garmestani. 2018. A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk. RSC Advances 8 (5):2714–2722.
  • Papadopoulou, N. A., A. B. Florou, and M. I. Prodromidis. 2018. Sensitive determination of iron using disposable Nafion-Coated Screen-Printed graphite electrodes. Analytical Letters 51 (1–2):198–208.
  • Pei, D.-N., A.-Y. Zhang, X.-Q. Pan, Y. Si, and H.-Q. Yu. 2018. Electrochemical sensing of bisphenol a on Facet-Tailored TiO2 single crystals engineered by Inorganic-Framework molecular imprinting sites. Analytical Chemistry 90(5):3165–3173.
  • Peng, C., N. Pan, Z. Xie, L. Liu, J. Xiang, and C. Liu. 2016. Determination of bisphenol a by a gold nanoflower enhanced enzyme-linked immunosorbent assay. Analytical Letters 49 (10):1492–1501.
  • Portaccio, M., D. Di Tuoro, F. Arduini, D. Moscone, M. Cammarota, D. G. Mita, and M. Lepore. 2013. Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for bisphenol a detection. Electrochimica Acta 109:340–347.
  • Ragavan, K. V., and N. K. Rastogi. 2016. Graphene–copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of bisphenol-A. Sensors and Actuators B: Chemical 229:570–580.
  • Rochester, J. R., A. L. Bolden, and C. F. Kwiatkowski. 2018. Prenatal exposure to bisphenol A and hyperactivity in children: A systematic review and meta-analysis. Environment International 114:343–356.
  • Salatti-Dorado, J. Á., N. Caballero-Casero, M. D. Sicilia, M. L. Lunar, and S. Rubio. 2017. The use of a restricted access volatile supramolecular solvent for the LC/MS-MS assay of bisphenol A in urine with a significant reduction of phospholipid-based matrix effects. Analytica Chimica Acta 950:71–79.
  • Shim, K., J. Kim, M. Shahabuddin, Y. Yamauchi, M. S. A. Hossain, and J. H. Kim. 2018. Efficient wide range electrochemical bisphenol-A sensor by self-supported dendritic platinum nanoparticles on screen-printed carbon electrode. Sensors and Actuators B: Chemical 255:2800–2808.
  • Tajik, S., H. Beitollahi, and P. Biparva. 2018. Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. Journal of the Serbian Chemical Society 7:863–874.
  • Tekenya, R., K. Pokpas, N. Jahed, and E. I. Iwuoha. 2018. Enhanced specificity and sensitivity for the determination of nickel (II) by square-wave adsorptive cathodic stripping voltammetry at disposable graphene-modified pencil graphite electrodes. Analytical Letters 2018:1–26.
  • Tse, L. A., P. M. Y. Lee, W. M. Ho, A. T. Lam, M. K. Lee, S. S. M. Ng, Y. He, K-S Leung, J. C. Hartle, H. Hu., et al. 2017. Bisphenol a and other environmental risk factors for prostate cancer in Hong Kong. Environment International 107:1–7.
  • Vukojević, V.,. S. Djurdjić, Ľ. Švorc, T. Ć. Veličković, J. Mutić, and D. M. Stanković. 2018. Analytical approach for detection of ergosterol in mushrooms based on modification free electrochemical sensor in organic solvents. Food Analytical Methods 2018:1–7.
  • Wan, Y., Y. F. Zheng, H. T. Wan, H. Y. Yin, and X. C. Song. 2017. A novel electrochemical sensor based on Ag nanoparticles decorated multi-walled carbon nanotubes for applied determination of nitrite. Food Control 73:1507–1513.
  • Wang, D., Q. Chen, H. Huo, S. Bai, G. Cai, W. Lai, and J. Lin. 2017. Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles. Food Control 73:555–561.
  • Wang, X., M. Gao, Z. Zhang, H. Gu, T. Liu, N. Yu, X. Wang, and H. Wang. 2018. Development of CO2-Mediated switchable hydrophilicity Solvent-Based microextraction combined with HPLC-UV for the determination of bisphenols in foods and drinks. Food Analytical Methods 2018:1–12.
  • World Health Organization 2011. Toxicological and health aspects of bisphenol A: Report of joint FAO/WHO expert meeting 2-5 November 2010 and report of stakeholder meeting on bisphenol A, 1 November 2010. Ottawa, Canada: World Health Organization.
  • Xu, J., F. Huo, Y. Zhao, Y. Liu, Q. Yang, Y. Cheng, S. Min, Z. Jin, and Z. Xiang. 2018. In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. International Journal of Hydrogen Energy 43(18):8674–8682.
  • Yao, Z., X. Yang, X. Liu, Y. Yang, Y. Hu, and Z. Zhao. 2018. Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Microchimica Acta 185 (1):70.
  • Yoon, Y.,. P. Westerhoff, S. A. Snyder, and M. Esparza. 2003. HPLC-fluorescence detection and adsorption of bisphenol A, 17beta-estradiol, and 17alpha-ethynyl estradiol on powdered activated carbon . Water Research 37 (14):3530–3537.
  • Zaimbashi, R., H. Beitollahi, and M. Torkzadeh-Mahani. 2017. Simultaneous electrochemical sensing of methyldopa and hydrochlorothiazide using a novel ZnO/Al2O3 nanocomposite modified screen printed electrode. Analytical & Bioanalytical Electrochemistry 9(8):1008–1020.
  • Zhang, L., L. Zhou, W. Ji, W. Song, and S. Zhao. 2017. Cysteamine-Assisted highly sensitive detection of bisphenol a in water samples by Surface-Enhanced raman spectroscopy with Ag Nanoparticle-Modified filter paper as substrate. Food Analytical Methods 10 (6):1940–1947.
  • Zhao, X., J. Zuo, S. Qiu, W. Hu, Y. Wang, and J. Zhang. 2017. Reduced graphene oxide-modified screen-printed carbon (rGO-SPCE)-based disposable electrochemical sensor for sensitive and selective determination of ethyl carbamate. Food Analytical Methods 10 (10):3329–3337.
  • Zhu, Y-T, C-X Yang, B.-B. Luo, K. Zhou, and S-L Liu. 2017. Efficiency of dairy strains of lactic acid bacteria to bind bisphenol A in phosphate buffer saline. Food Control 73:1203–1209.
  • Zuo, Y., J. Xu, F. Jiang, X. Duan, L. Lu, H. Xing, T. Yang, Y. Zhang, G. Ye, and Y. Yu. 2017. Voltammetric sensing of Pb (II) using a glassy carbon electrode modified with composites consisting of Co3O4 nanoparticles, reduced graphene oxide and chitosan. Journal of Electroanalytical Chemistry 801:146–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.