376
Views
4
CrossRef citations to date
0
Altmetric
Raman

Silver Nanostructures on Graphene Oxide as the Substrate for Surface-Enhanced Raman Scattering (SERS)

, , , , &
Pages 1477-1486 | Received 18 Sep 2018, Accepted 09 Nov 2018, Published online: 01 Jan 2019

References

  • Banaee, M. G., and K. B. Crozier. 2011. Mixed dimer double resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 5(1):307–314. doi:10.1021/nn102726j.
  • Cai, Q., S. Lu, F. Liao, Y. Li, S. Ma, and M. Shao. 2014. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 6(14):8117–8123. doi:10.1039/C4NR01751J.
  • Cao, X., S. Yan, Y. Cheng, J. Wang, Y. Zhu, B. Sun, and Z. Xiao. 2016. Cysteine-modified graphene/gold nanorod composites toward rhodamine 6G detection by surface-enhanced Raman scattering. Journal of Nanoscience and Nanotechnology 16(7):6697–6704. doi:10.1166/jnn.2016.11391.
  • Chen, G., Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen. 2010. Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. Journal of the American Chemical Society 132(11):3644–3645. doi:10.1021/ja9090885.
  • Chen, J., X. Zheng, H. Wang, and W. Zheng. 2011. Graphene oxide-Ag nanocomposite: in situ photochemical synthesis and application as a surface-enhanced Raman scattering substrate. Thin Solid Films 520(1):179–185. doi:10.1016/j.tsf.2011.07.012.
  • Chen, J., H. Su, X. You, J. Gao, W. M. Lau, and D. Zhang. 2014. 3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation. Materials Research Bulletin 49(1):560–565. doi:10.1016/j.materresbull.2013.09.040.
  • Chirumamilla, M., A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio. 2014. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering. Advanced Materials 26(15):2353–2358. doi:10.1002/adma.201304553.
  • Dong, Y., H. Zhang, Z. U. Rahman, L. Su, X. Chen, J. Hu, and X. Chen. 2012. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976. doi:10.1039/C2NR12109C.
  • Du, Y., Y. Zhao, Y. Qu, C. H. Chen, C. M. Chen, C. H. Chuang, and Y. Zhu. 2014. Enhanced light–matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. Journal of Materials Chemistry C 2(23):4683–4691. doi:10.1039/C4TC00353E.
  • Feng, C., Y. Zhao, and Y. Jiang. 2016. Periodic array of regular Ag nanoparticle trimers: a reliable polarization-independent surface-enhanced Raman spectroscopy substrate. RSC Advances 6(86):83273–83279. doi:10.1039/C6RA14985E.
  • Gopalakrishnan, A., M. Chirumamilla, A. F. De, A. Toma, R. P. Zaccaria, and R. Krahne. 2014. Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules. ACS Nano 8(8):7986–7994. doi:10.1021/nn5020038.
  • Guo, P., D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng. 2015. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale 7(7):2862–2868. doi:10.1039/C4NR06429A.
  • Guo, S., S. Dong, and E. Wang. 2009. Rectangular silver nanorods: controlled preparation, liquid-liquid interface assembly, and application in surface-enhanced Raman scattering. Crystal Growth & Design 9(1):187–191. doi:10.1021/cg800583h.
  • Hu, L., Y. J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, and S. Jiang. 2017. Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications. Journal of Materials Chemistry C 5(16):3908–3915. doi:10.1039/C7TC00381A.
  • Kim, K., H. S. Han, I. Choi, C. Lee, S. Hong, S. H. Suh, L. P. Lee, and T. Kang. 2013. Interfacial liquid-state surface-enhanced Raman spectroscopy. Nature Communications 4:2182. doi:10.1038/ncomms3182.
  • Kim, Y. K., S. W. Han, and D. H. Min. 2012. Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering. ACS Applied Materials & Interfaces 4(12):6545–6551. doi:10.1021/am301658p.
  • Kuila, T., S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee. 2011. Recent advances in graphene-based biosensors. Biosensors and Bioelectronics 26(12):4637–4648. doi:10.1016/j.bios.2011.05.039.
  • Larmour, I. A., K. Faulds, and D. Graham. 2010. Improved versatility of silver nanoparticle dimers for surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry C 114(31):13249–13254. doi:10.1021/jp1045222.
  • Lee, W. W. Y., V. A. Silverson, L. E. Jones, Y. C. Ho, N. C. Fletcher, M. McNaul, K. L. Peters, S. J. Speers, and S. E. Bell. 2016. Surface-enhanced Raman spectroscopy of novel psychoactive substances using polymer-stabilized Ag nanoparticle aggregates. Chemical Communications 52(3):493–496. doi:10.1039/C5CC06745F.
  • Li, D., D. W. Li, Y. Li, J. S. Fossey, and Y. T. Long. 2010. Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. Journal of Materials Chemistry 20(18):3688–3693. doi:10.1039/B924865J.
  • Li, J. F., X. D. Tian, S. B. Li, J. R. Anema, Z. L. Yang, Y. Ding, Y. F. Wu, Y. M. Zeng, Q. Z. Chen, B. Ren., et al. 2013. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Protocols 8(1):52–65. doi:10.1038/nprot.2012.141.
  • Li, Y., J. Yang, Y. Zhou, N. Zhao, W. Zeng, and W. Wang. 2017a. Fabrication of gold nanoparticles/graphene oxide films with surface-enhanced Raman scattering activity by a simple electrostatic self-assembly method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 512:93–100. doi:10.1016/j.colsurfa.2016.10.028.
  • Li, J., D. Kong, A. Xie, Y. Huang, F. Huang, S. Li, and Y. Shen. 2017b. An ordered AgNWs@GO-AgNPs film as the sensitive, stable and multifunctional surface-enhanced Raman scattering substrate. Journal of the Electrochemical Society 164(14):B747–B752. doi:10.1149/2.1951713jes.
  • Li, Y., X. Zhao, P. Zhang, J. Ning, J. Li, Z. Su, and G. Wei. 2015. A facile fabrication of large-scale reduced graphene oxide-silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. Journal of Materials Chemistry C 3(16):4126–4133. doi:10.1039/C5TC00196J.
  • Lim, D. K., K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam. 2011. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1 nm interior gap. Nature Nanotechnology 6(7):452–460. doi:10.1038/nnano.2011.79.
  • Liu, X., L. Cao, S. Wei, K. Ai, and L. Lu. 2011. Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. ACS Applied Materials & Interfaces 3(8):2944–2952. doi:10.1021/am200737b.
  • Liu, R., X. Zi, Y. Kang, M. Si, and Y. Wu. 2011. Surface‐enhanced Raman scattering study of human serum on PVA-Ag nanofilm prepared by using electrostatic self‐assembly. Journal of Raman Spectroscopy 42(2):137–144. doi:10.1002/jrs.2665.
  • Lu, G., T. Z. Forbes, and A. J. Haes. 2016. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst 141(17):5137–5143. doi:10.1039/C6AN00891G.
  • Luo, Z., L. Yuwen, B. Bao, J. Tian, X. Zhu, L. Weng, and L. Wang. 2012a. One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells. Journal of Materials Chemistry 22(16):7791–7796. doi:10.1039/C2JM30376K.
  • Luo, Z., L. Yuwen, Y. Han, J. Tian, X. Zhu, L. Weng, and L. Wang. 2012b. Reduced graphene oxide/PAMAM-silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing. Biosensors and Bioelectronics 36(1):179–185. doi:10.1016/j.bios.2012.04.009.
  • Panwar, K., M. Jassal, and A. K. Agrawal. 2017. Ag-SiO2 Janus particles based highly active SERS macroscopic substrates. Applied Surface Science 411(7):368–373. doi:10.1016/j.apsusc.2017.03.105.
  • Patra, P. P., R. Chikkaraddy, R. P. Tripathi, A. Dasgupta, and G. V. Kumar. 2014. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nature Communications 5:4357. doi:10.1038/ncomms5357.
  • Sabur, A., M. Havel, and Y. Gogotsi. 2008. SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. Journal of Raman Spectroscopy 39(1):61–67. doi:10.1002/jrs.1814.
  • Sun, S., and P. Wu. 2011. A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. Journal of Materials Chemistry 21(12):4095–7. doi:10.1039/C1JM10276A.
  • Tang, L., S. Li, F. Han, L. Liu, L. Xu, W. Ma, H. Kuang, A. Li, L. Wang, and C. Xu. 2015. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosensors and Bioelectronics 71(9):7–12. doi:10.1016/j.bios.2015.04.013.
  • Wan, M., Z. Liu, S. Li, B. Yang, W. Zhang, X. Qin, and Z. Guo. 2013. Silver nanoaggregates on chitosan functionalized graphene oxide for high-performance surface-enhanced Raman scattering. Applied Spectroscopy 67(7):761–766. doi:10.1366/12-06777.
  • Wang, C., J. Fang, Y. Jin, and M. Cheng. 2011. Fabrication and surface-enhanced Raman scattering (SERS) of Ag/Au bimetallic films on Si substrates. Applied Surface Science 258(3):1144–1148. doi:10.1016/j.apsusc.2011.09.052.
  • Wang, X., G. Meng, C. Zhu, Z. Huang, Y. Qian, K. Sun, and X. Zhu. 2013. A generic synthetic approach to large-scale pristine-graphene/metal-nanoparticles hybrids. Advanced Functional Materials 23(46):5771–5777. doi:10.1002/adfm.201301409.
  • Wang, X., C. Zhu, Z. Huang, X. Hu, and X. Zhu. 2016. In situ synthesis of pristine-graphene/Ag nanocomposites as highly sensitive SERS substrates. RSC Advances 6(94):91579–91583. doi:10.1039/C6RA20085K.
  • Xie, L., X. Ling, Y. Fang, J. Zhang, and Z. Liu. 2009. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society 131(29):9890–9891. doi:10.1021/ja9037593.
  • Yang, W., K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braet. 2010. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?. Angewandte Chemie International Edition 49(12):2114–2138. doi:10.1002/anie.200903463.
  • Yu, X., X. He, T. Yang, L. Zhao, Q. Chen, S. Zhang, J. Chen, and J. Xu. 2018. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers. International Journal of Nanomedicine 13:2337–2347. doi:10.2147/IJN.S156932.
  • Zhang, Z., Q. Liu, D. Gao, D. Luo, Y. Niu, J. Yang, and Y. Li. 2015. Graphene oxide as a multifunctional platform for Raman and fluorescence imaging of cells. Small 11(25):3000–3005. doi:10.1002/smll.201403459.
  • Zhang, C. Y., R. Hao, B. Zhao, Y. Fu, H. Zhang, S. Moeendarbari, C. S. Pickering, Y. W. Hao, and Y. Q. Liu. 2017a. Graphene oxide-wrapped flower-like sliver particles for surface-enhanced Raman spectroscopy and their applications in polychlorinated biphenyls detection. Applied Surface Science 400(12):49–56. doi:10.1016/j.apsusc.2016.12.161.
  • Zhang, C. Y., R. Hao, B. Zhao, Y. W. Hao, and Y. Q. Liu. 2017b. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform. Applied Surface Science 409(7):303–313. doi:10.1016/j.apsusc.2017.03.023.
  • Zhou, X., X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, and H. Zhang. 2009. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. The Journal of Physical Chemistry C 113(25):10842–10846. doi:10.1021/jp903821n.
  • Zhu, Y., X. Jiang, H. Wang, S. Wang, H. Wang, B. Sun, Y. Su, and Y. He. 2015. A poly adenine-mediated assembly strategy for designing surface-enhanced resonance Raman scattering substrates in controllable manners. Analytical Chemistry 87(13):6631–6638. doi:10.1021/acs.analchem.5b00676.
  • Zhu, C., G. Meng, P. Zheng, Q. Huang, Z. Li, X. Hu, X. Wang, Z. Huang, F. Li, and N. Wu. 2016. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Advanced Materials 28(24):4871–4876. doi:10.1002/adma.201506251.
  • Zhu, C., X. Wang, X. Shi, F. Yang, G. Meng, Q. Xiong, Y. Ke, H. Wang, Y. Lu, and N. Wu. 2017. Detection of dithiocarbamate pesticides with a spongelike surface-enhanced Raman scattering substrate made of reduced graphene oxide-wrapped silver nanocubes. ACS Applied Materials & Interfaces 9:39618–39625. doi:10.1021/acsami.7b13479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.