154
Views
3
CrossRef citations to date
0
Altmetric
Infrared

Near-Infrared Spectroscopy Analytical Model Using Ensemble Partial Least Squares Regression

, , , &
Pages 1732-1756 | Received 06 Sep 2018, Accepted 08 Jan 2019, Published online: 18 Feb 2019

References

  • Almeida, V. E. D., A. D. A. Gomes, D. D. D. S. Fernandes, H. C. Goicoechea, R. K. H. Galvão, and M. C. U. Araújo. 2018. Vis-NIR spectrometric determination of brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm. Talanta 181:38–43. doi:10.1016/j.talanta.2017.12.064.
  • Andries, J. P. M., Y. V. Heyden, and L. M. C. Buydens. 2017. Improved variable reduction in partial least squares modelling by Global-Minimum error Uninformative-Variable elimination. Analytica Chimica Acta 982:37–47. doi:10.1016/j.aca.2017.06.001.
  • Araújo, M. C. U., T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, and V. Visani. 2001. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems 57 (2):65–73. doi:10.1016/S0169-7439(01)00119-8.
  • Bangalore, A. S., R. E. Shaffer, G. W. Small, and M. A. Arnold. 1996. Genetic algorithm-based method for selecting wavelengths and model size for use with partial least-squares regression: application to near-infrared spectroscopy. Analytical Chemistry 68 (23):4200–4212. doi:10.1021/ac9607121.
  • Bellman, R. 1961. Adaptive control processes: A guided tour. Princeton, NJ: The University Press.
  • Cai, W., Y. Li, and X. Shao. 2008. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics & Intelligent Laboratory Systems 90 (2):188–194. doi:10.1016/j.chemolab.2007.10.001.
  • Cayuela, J. A., and J. F. García. 2018. Nondestructive measurement of squalene in olive oil by near infrared spectroscopy. LWT—Food Science and Technology 88:103–108. doi:10.1016/j.lwt.2017.09.047.
  • Centner, V., D.-L. Massart, O. E. D. Noord, S. D. Jong, B. M. Vandeginste, and C. Sterna. 1996. Elimination of uninformative variables for multivariate calibration. Analytical Chemistry 68 (21):3851–3858. doi:10.1021/ac960321m.
  • Cheng, J. H., D. W. Sun, and H. Pu. 2016. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen-thawed fish muscle. Food Chemistry 197 (Pt A):855–863. doi:10.1016/j.foodchem.2015.11.019.
  • Dash, M., and H. Liu. 1997. Feature selection for classfication. Intelligent Data Analysis 1 (3):131–156. doi:10.1016/S1088-467X(97)00008-5.
  • Deng, B. C., Y. H. Yun, P. Ma, C. C. Lin, D. B. Ren, and Y. Z. Liang. 2015. A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals. The Analyst 140 (6):1876–1885. doi:10.1039/C4AN02123A.
  • Dietterich, T. G. 2000. Ensemble methods in machine learning. In Proceedings of the first international workshop on multiple classifier systems, London.
  • Efron, B. 1979. Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7 (1):1–26. doi:10.1214/aos/1176344552.
  • García-Torres, M., F. Gómez-Vela, B. Melián-Batista, and J. M. Moreno-Vega. 2016. High-dimensional feature selection via feature grouping: A variable neighborhood search approach. Information Sciences 326 (C ):102–118. doi:10.1016/j.ins.2015.07.041.
  • Ghalwash, M. F., X. H. Cao, I. Stojkovic, and Z. Obradovic. 2016. Structured feature selection using coordinate descent optimization. BMC Bioinformatics 17 (1):158–171. doi:10.1186/s12859-016-0954-4.
  • Han, Q. J., H. L. Wu, C. B. Cai, L. Xu, and R. Q. Yu. 2008. An ensemble of monte carlo uninformative variable elimination for wavelength selection. Analytica Chimica Acta 612 (2):121–125. doi:10.1016/j.aca.2008.02.032..
  • Hu, N., and R. B. Dannenberg. 2006. Bootstrap learning for accurate onset detection. Machine Learning 65 (2–3):457–471. doi:10.1007/s10994-006-8458-5.
  • Huang, X. W., X. B. Zou, J. W. Zhao, J. Y. Shi, X. L. Zhang, and M. Holmes. 2014. Measurement of total anthocyanins content in flowering tea using near infrared spectroscopy combined with ant colony optimization models. Food Chemistry 164 (20):536–543. doi:10.1016/j.foodchem.2014.05.072.
  • Jiang, J. H., R. J. Berry, H. W. Siesler, and Y. Ozaki. 2002. Wavelength interval selection in multicomponent spectral analysis by moving window partial Least-Squares regression with applications to Mid-Infrared and near-Infrared spectroscopic data. Analytical Chemistry 74 (14):3555–3565. doi:10.1021/ac011177u.
  • Jouanrimbaud, D., D. L. Massart, R. Leardi, and O. E. D. Noord. 1995. Genetic algorithms as a tool for wavelength selection in multivariate calibration. Analytical Chemistry 67 (23):4295–4301. doi:10.1021/ac00119a015.
  • Kalivas, J. H., N. Roberts, and J. M. Sutter. 1989. Global optimization by simulated annealing with wavelength selection for ultraviolet-visible spectrophotometry. Analytical Chemistry 61 (18):2024–2030. doi:10.1021/ac00193a006.
  • Kalousis, A., J. Prados, and M. Hilario. 2005. Stability of feature selection algorithms. The fifth IEEE international conference on data mining. Washington, DC, November 27.
  • Kim, Y., M. Singh, and S. E. Kays. 2007. Near-infrared spectroscopic analysis of macronutrients and energy in homogenized meals. Food Chemistry 105 (3):1248–1255. doi:10.1016/j.foodchem.2007.03.011.
  • Li, H. D., Y. Z. Liang, Q. S. Xu, and D. S. Cao. 2009. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta 648 (1):77–84. doi:10.1016/j.aca.2009.06.046.
  • Li, S. F., X. Zhang, Y. Shan, D. L. Su, Q. Ma, R. Z. Wen, and J. J. Li. 2017. Qualitative and quantitative detection of honey adulterated with High-Fructose corn syrup and maltose syrup by using near-Infrared spectroscopy. Food Chemistry 218:231–236. doi:10.1016/j.foodchem.2016.08.105.
  • Liu, C., J. P. Jiang, J. L. Gu, Z. S. Yu, T. Wang, and H. Lu. 2016. High-dimensional omics data analysis using a variable screening protocol with prior knowledge integration (SKI). BMC Systems Biology 10 (4):457–464. doi:10.1186/s12918-016-0358-0.
  • Ma, T., X. Z. Li, T. Inagaki, H. Y. Yang, and S. Tsuchikawa. 2018. Noncontact evaluation of soluble solids content in apples by near-infrared hyperspectral imaging. Journal of Food Engineering 224:53–61. doi:10.1016/j.jfoodeng.2017.12.028.
  • Mehmood, T., K. H. Liland, L. Snipen, and S. Saebø. 2012. A review of variable selection methods in partial least squares regression. Chemometrics & Intelligent Laboratory Systems 118 (16):62–69. doi:10.1016/j.chemolab.2012.07.010.
  • Milanez, K. D. T. M., T. C. Araújo Nóbrega, D. Silva Nascimento, R. K. H. Galvão, and M. J. C. Pontes. 2017. Selection of robust variables for transfer of classification models employing the successive projections algorithm. Analytica Chimica Acta 984:76–85. doi:10.1016/j.aca.2017.07.037.
  • Norgaard, L., A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, and S. B. Engelsen. 2000. Interval partial Least-Squares regression (iPLS): a comparative chemometric study with an example from near-Infrared spectroscopy. Applied Spectroscopy 54 (3):413–419. doi:10.1366/0003702001949500.
  • Saeys, Y., T. Abeel, and Y. V. D. Peer. 2008. Robust feature selection using ensemble feature selection techniques. In European conference on machine learning and knowledge discovery in databases, Antwerp, Belgium, September 15.
  • Shi, J. Y., X. T. Hu, X. B. Zou, J. W. Zhao, W. Zhang, X. W. Huang, Y. D. Zhu, Z. H. Li, and Y. W. Xu. 2016. A heuristic and parallel simulated annealing algorithm for variable selection in near‐infrared spectroscopy analysis. Journal of Chemometrics 30 (8):442–450. doi:10.1002/cem.2812.
  • Song, X. Z., Y. Huang, H. Yan, Y. M. Xiong, and S. G. Min. 2016. A novel algorithm for spectral interval combination optimization. Analytica Chimica Acta 948:19–29. doi:10.1016/j.aca.2016.10.041.
  • Taşkın, G., H. Kaya, and L. Bruzzone. 2017. Feature selection based on high dimensional model representation for hyperspectral images. IEEE Transactions on Image Processing 26:2918–2928. doi:10.1109/TIP.2017.2687128.
  • Thomas, A., H. Thibault, V. D. P. Yves, D. Pierre, and S. Yvan. 2010. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26 (3):392–398.
  • Wang, Y., J. J. Huang, N. Zhou, D. S. Cao, J. Dong, and H. X. Li. 2015. Incorporating PLS model information into particle swarm optimization for descriptor selection in QSAR/QSPR. Journal of Chemometrics 29 (12):627–636. doi:10.1002/cem.2746.
  • Wold, H. 1980. Model construction and evaluation when theoretical knowledge is scarce: Theory and application of partial least squares. In Evaluation of econometric models, ed. J. Kmenta & J. B. Ramsey. New York: Academic Press.
  • Wold, S., A. Ruhe, H. Wold, and W. J. Dunn. 1984. The collinearity problem in linear regression. The partial least squares (PLS) Approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing 5 (3):735–743. doi:10.1137/0905052.
  • Zhang, R., Y. Y. Chen, Z. B. Wang, and K. W. Li. 2017. A novel ensemble L1 regularization based variable selection framework with an application in near infrared spectroscopy. Chemometrics & Intelligent Laboratory Systems 163:7–15. doi:10.1016/j.chemolab.2017.01.020.
  • Zhang, R. Q., F. Y. Zhang, W. C. Chen, H. M. Yao, J. Ge, S. C. Wu, T. Wu, and Y. P. Du. 2018. A new strategy of least absolute shrinkage and selection operator coupled with sampling error profile analysis for wavelength selection. Chemometrics & Intelligent Laboratory Systems 175:47–54. doi:10.1016/j.chemolab.2018.02.007.
  • Zou X. B., J. W. Zhao, M. J. Povey, M. Holmes, and H. P. Mao. 2010. Variables selection methods in near-infrared spectroscopy. Analytica Chimica Acta 667 (1–2):14–32. doi:10.1016/j.aca.2010.03.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.