468
Views
15
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical Determination of Lead(II) in Environmental Waters Using a Sulfydryl Modified Covalent Organic Framework by Square Wave Anodic Stripping Voltammetry (SWASV)

, , , &
Pages 1757-1770 | Received 16 Sep 2018, Accepted 08 Jan 2019, Published online: 25 Apr 2019

References

  • Chaiyo, S., E. Mehmeti, K. Žagar, W. Siangproh, O. Chailapakul, and K. Kalcher. 2016. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Analytica Chimica Acta 918:26–34. doi:10.1016/j.aca.2016.03.026.
  • Dahaghin, Z., P. A. Kilmartin, and H. Z. Mousavi. 2018. Simultaneous determination of lead(II) and cadmium(II) at a glassy carbon electrode modified with GO@Fe3O4@benzothiazole-2-carboxaldehyde using square wave anodic stripping voltammetry. Journal of Molecular Liquids 249:1125–1132. doi:10.1016/j.molliq.2017.11.114.
  • Ding, S. Y., M. Dong, Y. W. Wang, Y. T. Chen, H. Z. Wang, C. Y. Su, and W. Wang. 2016. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II). Journal of the American Chemical Society 138 (9):3031–3037. doi:10.1021/jacs.5b10754.
  • Dong, Y., and L. Zhang. 2018. Constructed 3D hierarchical porous wool-ball-like NiO-loaded AlOOH electrode materials for the determination of toxic metal ions. Electrochimica Acta 271:27–34. doi:10.1016/j.electacta.2018.03.110.
  • Gao, F., N. Gao, A. Nishitani, and H. Tanaka. 2016. Rod-like hydroxyapatite and nafion nanocomposite as an electrochemical matrix for simultaneous and sensitive detection of Hg2+, Cu2+, Pb2+ and Cd2+. Journal of Electroanalytical Chemistry 775:212–218. doi:10.1016/j.jelechem.2016.05.032.
  • Ghaedi, M., F. Ahmadi, and M. Soylak. 2007. Simultaneous preconcentration of copper, nickel, cobalt and lead ions prior to their flame atomic absorption spectrometric determination. Annali Di Chimica 97 (5/6):277–285. doi:10.1002/adic.200790027.
  • Guo, L., X. Zeng, and D. Cao. 2016. Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform: Functional group effects. Sensors and Actuators B: Chemical 226:273–278. doi:10.1016/j.snb.2015.11.108.
  • He, W., L. Luo, Q. Liu, and Z. Chen. 2018. Colorimetric sensor array for discrimination of heavy metal ions in solution based on three kinds of thiols as receptors. Analytical Chemistry 90 (7):4770–4775. doi:10.1021/acs.analchem.8b00076.
  • Kawde, A., A. Ismail, A. R. Al-Betar, and O. Muraza. 2017. Novel Ce-incorporated zeolite modified-carbon paste electrode for simultaneous trace electroanalysis of lead and cadmium. Microporous & Mesoporous Materials 243:1–8. doi:10.1016/j.micromeso.2017.02.008.
  • Kong, Y., T. Wu, D. Wu, Y. Zhang, Y. Wang, B. Du, and Q. Wei. 2018. An electrochemical sensor based on Fe3O4@PANI nanocomposites for sensitive detection of Pb2+ and Cd2+. Analytical Methods 10:4787–4792. doi:10.1039/C8AY01245H.
  • Li, X., H. Zhou, C. Fu, F. Wang, Y. Ding, and Y. Kuang. 2016. A novel design of engineered multi-walled carbon nanotubes material and its improved performance in simultaneous detection of cd(II) and Pb(II) by square wave anodic stripping voltammetry. Sensors and Actuators B Chemical 236:144–152. doi:10.1016/j.snb.2016.05.149.
  • Ma, L., S. Wang, X. Feng, and B. Wang. 2016. Recent advances of covalent organic frameworks in electronic and optical applications. Chinese Chemical Letters 27 (8):1383–1394. doi:10.1016/j.cclet.2016.06.046.
  • Ma, Y., Y. Wang, D. Xie, Y. Gu, X. Zhu, H. Zhang, G. Wang, Y. Zhang, and H. Zhao. 2018. Hierarchical MgFe-layered double hydroxide microsphere/graphene composite for simultaneous electrochemical determination of trace Pb(II) and cd(II). Chemical Engineering Journal 347:953–962. doi:10.1016/j.cej.2018.04.172.
  • Muralikrishna, S., D. H. Nagaraju, R. G. Balakrishna, W. Surareungchai, T. Ramakrishnappa, and A. B. Shivanandareddy. 2017. Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions. Analytica Chimica Acta 990:67–77. doi:10.1016/j.aca.2017.09.008.
  • Ning, H., L. Zhai, X. Hong, and D. Jiang. 2017. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. Journal of the American Chemical Society 39 (6):2428–2434. doi:10.1021/jacs.6b12328.
  • Peña, R. C., L. Cornejo, M. Bertotti, and C. M. A. Brett. 2018. Electrochemical determination of cd(II) and Pb(II) in mining effluents using a bismuth-coated carbon fiber microelectrode. Analytical Methods 10(29):3624–3630. doi:10.1039/C8AY00949J.
  • Qiu, N., Y. Liu, and R. Guo. 2016. A novel sensitive electrochemical sensor for lead ion based on three-dimensional graphene/sodium dodecyl benzene sulfonate hemimicelle nanocomposites. Electrochimica Acta 212:147–154. doi:10.1016/j.electacta.2016.06.136.
  • Sha, H., Y. Wu, and Y. Fan. 2017. A Fe-OSA/nafion composite film-decorated glassy carbon electrode as a sensor for detection of Pb(II), Cd(II) and Cu(II). Analytical Methods 9:5618–5631. doi:10.1039/C7AY01681F.
  • Shi, L., Y. Li, X. Rong, Y. Wang, and S. Ding. 2017. Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Analytica Chimica Acta 968:21–29. doi:10.1016/j.aca.2017.03.013.
  • Shi, M., X. Yang, L. Qin, and W. Zhang. 2018. Highly efficient electrocatalytic vapor generation of methylmercury based on the gold particles deposited glassy carbon electrode: A typical application for sensitive mercury speciation analysis in fish samples. Analytica Chimica Acta 1025:58–68. doi:10.1016/j.aca.2018.04.057.
  • Shi, X., W. Gu, C. Zhang, L. Zhao, L. Li, W. Peng, and X. Yue. 2016. Construction of a graphene/Au-nanoparticles/cucurbit[7]uril-based sensor for lead(II) sensing. Chemistry - A European Journal 22 (16):5643–5648. doi:10.1002/chem.201505034.
  • Sun, Q., B. Aguila, J. Perman, L. D. Earl, C. W. Abney, Y. Cheng, H. Wei, N. Nguyen, L. Wojtas, and S. Ma. 2017. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. Journal of the American Chemical Society 139 (7):2786–2793. doi:10.1021/jacs.6b12885.
  • Sun, Q., J. Wang, M. Tang, L. Huang, Z. Zhang, C. Liu, X. Lu, K. W. Hunter, and G. Chen. 2017. A new electrochemical sysTransmission electron microscopy based on a flow-field shaped solid electrode and 3D-printed thin-layer flow cell: Detection of lead(II) ions by continuous flow accumulation square-wave anodic stripping voltammetry. Analytical Chemistry 89 (9):5024–5029. doi:10.1021/acs.analchem.7b00383.
  • Tchinda, A. J., E. Ngameni, I. T. Kenfack, and A. Walcarius. 2009. One-step preparation of thiol-functionalized porous clay heterostructures: Application to Hg (II) binding and characterization of mass transport issues. Chemistry of Materials 21 (18):4111–4121. doi:10.1021/cm8024022.
  • Tseliou, F., A. Avgeropoulos, P. Falaras, and M. I. Prodromidis. 2017. Low dimensional Bi2Te3-graphene oxide hybrid film-modified electrodes for ultra-sensitive stripping voltammetric detection of Pb(II) and cd(II). Electrochimica Acta 231:230–237. doi:10.1016/j.electacta.2017.02.058.
  • Wang, H., H. Ding, X. Meng, and C. Wang. 2016. Two-dimensional porphyrin-and phthalocyanine-based covalent organic frameworks. Chinese Chemical Letters 27 (8):1376–1382. doi:10.1016/j.cclet.2016.05.020.
  • Wang, Y., K. Du, Y. Chen, Y. Li, and X. He. 2016. Electrochemical determination of lead based on metal–organic framework MIL-101 (Cr) by differential pulse anodic stripping voltammetry. Analytical Methods 8 (15):3263–3269. doi:10.1039/C6AY00183A.
  • Wu, M., and Y. Yang. 2017. Applications of covalent organic frameworks (Covalent organic framework): From gas storage and separation to drug delivery. Chinese Chemical Letters 28 (6):1135–1143. doi:10.1016/j.cclet.2017.03.026.
  • Yang, D., X. Liu, Y. Zhou, L. Luo, J. Zhang, A. Huang, Q. Mao, X. Chen, and L. Tang. 2017. Aptamer-based biosensors for detection of lead(II) ion: A review. Analytical Methods 9 (13):1976–1990. doi:10.1039/C7AY00477J.
  • Yang, L., and D. Wei. 2016. Semiconducting covalent organic frameworks: A type of two-dimensional conducting polymers. Chinese Chemical Letters 27 (8):1395–1404. doi:10.1016/j.cclet.2016.07.010.
  • Yu, Y., Y. Hong, P. Gao, and M. K. Nazeeruddin. 2016. Glutathione modified gold nanoparticles for sensitive colorimetric detection of lead(II) Ions in rainwater polluted by leaking perovskite solar cells. Analytical Chemistry 88 (24):12316–12322. doi:10.1021/acs.analchem.6b03515.
  • Zhang, B., and C. Wei. 2018. Highly sensitive and selective detection of lead(II) using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. Talanta 182:125–130. doi:10.1016/j.talanta.2018.01.061.
  • Zhang, T., C. Gao, W. Huang, Y. Chen, Y. Wang, and J. Wang. 2018. Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead. Talanta 188:578–583. doi:10.1016/j.talanta.2018.06.032.
  • Zhao, G., Y. Yin, H. Wang, G. Liu, and Z. Wang. 2016. Sensitive stripping voltammetric determination of cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode. Electrochimica Acta 220:267–275. doi:10.1016/j.electacta.2016.10.059.
  • Zhu, G., Y. Ge, Y. Dai, X. Shang, J. Yang, and J. Liu. 2018. Size-tunable polyaniline nanotube-modified electrode for simultaneous determination of Pb(II) and cd(II). Electrochimica Acta 268:202–210. doi:10.1016/j.electacta.2018.02.101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.