498
Views
11
CrossRef citations to date
0
Altmetric
Food Analysis

Effect of the Chemical Composition of Miso (Japanese Fermented Soybean Paste) Upon the Sensory Evaluation

, , , , , & show all
Pages 1813-1827 | Received 19 Nov 2018, Accepted 11 Jan 2019, Published online: 08 Feb 2019

References

  • Anuradha, R., A. K. Suresh, and K. V. Venkatesh. 1999. Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochemistry 35 (3/4):367–375. doi:10.1016/S0032-9592(99)00080-1.
  • Atsuko, S., and N. Ichiro. 2008. Relationship between the color of soybean past and antioxidative activity. Journal for the Integrated Study of Dietary Habits 19 (3):247–250. doi:10.2740/jisdh.19.247
  • Byun, B. Y., and J.-H. Mah. 2012. Occurrence of biogenic amines in miso, Japanese traditional fermented soybean paste. Journal of Food Science 77 (12):T216–T223. doi:10.1111/j.1750-3841.2012.02983.x.
  • Chiou, R. Y. Y. 1999. Salt-free miso fermentation using ethanol, Sugars, and polyols. Journal of Food Science 64 (5):918–920. doi:10.1111/j.1365-2621.1999.tb15940.x.
  • Chiou, R. Y. Y., Ferng, and S. L. R. Beuchat. 1999. Fermentation of low-salt miso as affected by supplementation with ethanol. International Journal of Food Microbiology 48 (1):11–20. doi:10.1016/S0168-1605(99)00033-1.
  • Fernandez-Vazquez, R., C. M. Stinco, A. J. Melendez-Martinez, F. J. Heredia, and I. M. Vicario. 2011. Visual and instrumental evaluation of orange juice color: a consumers’ preference study. Journal of Sensory Studies 26 (6):436–444. doi:10.1111/j.1745-459X.2011.00360.x.
  • Giri, A., A. Okamoto, E. Okazaki, and T. Ohshima. 2010. Headspace volatiles along with other instrumental and sensory analyses as indices of maturation of horse mackerel miso. Journal of Food Science 75 (8):S406–S417. doi:10.1111/j.1750-3841.2010.01780.x.
  • Giri, A., K. Osako, and T. Ohshima. 2010. Identification and characterisation of headspace volatiles of fish miso, a japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chemistry 120 (2):621–631. doi:10.1016/j.foodchem.2009.10.036.
  • Giri, A., K. Osako, A. Okamoto, E. Okazaki, and T. Ohshima. 2012. Effects of koji fermented phenolic compounds on the oxidative stability of fish miso. Journal of Food Science 77 (2):C228–C235. doi:10.1111/j.1750-3841.2011.02540.x.
  • Harada, R., M. Yuzuki, K. Ito, K. Shiga, T. Bamba, and E. Fukusaki. 2018. Microbe participation in aroma production during soy sauce fermentation. Journal of Bioscience and Bioengineering 125 (6):688–694. doi:10.1016/j.jbiosc.2017.12.004.
  • Hideo, E. 2004. Industrialization of Japanese miso fermentation. In Industrialization of indigenous fermented foods, Revised and expanded. ed. K. Steinkraus, 99–147. New York: Marcel Dekker, Inc.
  • Hitomi, Y. 1994. Quality evaluation of rice miso. Brewing Society of Japan 89 (3):200–206. doi:10.6013/jbrewsocjapan1988.89.200
  • Inoue, Y., S. Kato, M. Saikusa, C. Suzuki, Y. Otsubo, U. Tanaka, H. Watanabe, and F. Hayase. 2016. Analysis of the cooked aroma and odorants that contribute to umami aftertaste of soy miso (Japanese soybean paste). Food Chemistry 213:521–528. doi:10.1016/j.foodchem.2016.06.106.
  • Isao, M., and K. Keiji. 1998. Salty red rice miso (Echigo Miso - Sendai miso). Brewing Society of Japan 93 (12):932–941. doi:10.6013/jbrewsocjapan1988.93.932
  • Kaoru, O. 2006. A comparison of the analytical data on misos and soysauces submitted to Akita prefectural competitions during the last 50 years. Akita Research of Food & Brewing 101 (2):81–87. doi:10.6013/jbrewsocjapan1988.101.81
  • Kato, H., M. R. Rhue, and T. Nishimura. 1989. Role of free amino acids and peptides in food taste. In Flavor chemistry. In ed. R. Teranishi, R. G. Buttery, and F. Shahidi, Vol. 388, 158–174. Washington, DC: American Chemical Society. doi:10.1021/bk-1989-0388.ch013
  • Kitamura, Y., K. Kusumoto, T. Oguma, T. Nagai, S. Furukawa, C. Suzuki, and H. Tamaki. 2016. Ethnic fermented foods and alcoholic beverages of Japan. In Ethnic fermented foods and alcoholic beverages of Asia. ed. P. T. Jyoti, 193–236. New Delhi: Springer. doi:10.1007/978-81-322-2800-4_9
  • Klinke, H. B., A. B. Thomsen, and B. K. Ahring. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology 66 (1):10–26. doi:10.1007/s00253-004-1642-2.
  • Koyama, M., C. Nakamura, and K. Nakamura. 2013. Changes in phenols contents from buckwheat sprouts during growth stage. Journal of Food Science and Technology 50 (1):86–93. doi:10.1007/s13197-011-0316-1.
  • Kumazawa, K., S. Kaneko, and O. Nishimura. 2013. Identification and characterization of volatile components causing the characteristic flavor in miso (Japanese fermented soybean paste) and Heat-Processed miso products. Journal of Agricultural and Food Chemistry 61 (49):11968–11973. doi:10.1021/jf404082a.
  • Kung, H. F., Y. H. Tsai, and C. –I. Wei. 2007. Histamine and other biogenic amines and histamine-forming bacteria in miso products. Food Chemistry 101 (1):351–356. doi:10.1016/j.foodchem.2005.12.057.
  • Kurihara, K. 2009. Glutamate: from discovery as a food flavor to role as a basic taste (umami). The American Journal of Clinical Nutrition 90 (3):719S–722S. doi:10.3945/ajcn.2009.27462D.
  • Kwak, E. J., and S. I. Lim. 2004. The effect of sugar, amino acid, metal ion, and NaCl on model maillard reaction under pH control. Amino Acids 27 (1):85–90. doi:10.1007/s00726-004-0067-7
  • Machida, M.,. O. Yamada, and K. Gomi. 2008. Genomics of Aspergillus oryzae: Learning from the history of koji mold and exploration of its future. DNA Research 15 (4):173–183. doi:10.1093/dnares/dsn020.
  • Manta, C., G. Peralta-Altier, L. Gioia, M. F. Méndez, G. Seoane, and K. Ovsejevi. 2013. Synthesis of a thiol-β-cyclodextrin, a potential agent for controlling enzymatic browning in fruits and vegetables. Journal of Agricultural and Food Chemistry 61 (47):11603–11609. doi:10.1021/jf403063s.
  • Marui, J., S. Tada, M. Fukuoka, Y. Wagu, Y. Shiraishi, N. Kitamoto, T. Sugimoto, R. Hattori, S. Suzuki, and K.-I. Kusumoto. 2013. Reduction of the degradation activity of umami-enhancing purinic ribonucleotide supplement in miso by the targeted suppression of acid phosphatases in the Aspergillus oryzae starter culture. International Journal of Food Microbiology 166 (2):238–243. doi:10.1016/j.ijfoodmicro.2013.07.006.
  • Nikkuni, S. A., N. O. Okada, and H. I. Itoh. 1988. Effect of soybean cooking temperature on the texture and protein digestibility of miso. Journal of Food Science 53 (2):445–449. doi:10.1111/j.1365-2621.1988.tb07727.x.
  • Nowak, J., and M. Kuligowski. 2017. Functional properties of traditional food products made by mold fermentation. In Fermented foods, Part II: Technological interventions, ed. R. C. Ray and D. Montet, 46–73. Boca Raton, Florida: CRC Press.
  • Ogasawara, M., Y. Yamada, and M. Egi. 2006. Taste enhancer from the long-term ripening of miso (soybean paste). Food Chemistry 99 (4):736–741. doi:10.1016/j.foodchem.2005.08.051.
  • Onda, T., F. Yanagida, T. Uchimura, M. Tsuji, S. Ogino, T. Shinohara, and K. Yokotsuka. 2002. Widespread distribution of the bacteriocin-producing lactic acid cocci in miso-paste products. Journal of Applied Microbiology 92 (4):695–705. doi:10.1046/j.1365-2672.2002.01573.x.
  • Park, S.-L., S.-Y. Lee, Y.-D. Nam, S.-H. Yi, and S.-I. Lim. 2012. Fermentation properties of low-salted Doenjang supplemented with licorice and mustard. Food Science and Biotechnology 21 (1):91–99. doi:10.1007/s10068-012-0011-7.
  • Rai, A. K., and K.-I. Kusumoto. 2017. Miso, the traditional fermented soybean paste of Japan. In Fermented foods, Part II: Technological interventions, ed. R. C. Ray and D. Montet, 122–134. Florida: CRC Press.
  • Ratnaningrum, D., T. A. Budiwati, T. Darsini, and P. C. Mawarda. 2018. The production of corn kernel miso based on rice-koji fermented by Aspergillus oryzae and Rhizopus oligosporus. Journal of Tropical Biodiversity and Biotechnology 3 (1):8–17. doi:10.22146/jtbb.28765.
  • Rhee, S., J. E. Lee, and C. H. Lee. 2011. Importance of lactic acid bacteria in Asian fermented foods. Microbial Cell Factories 10 (Suppl 1):S5. doi:10.1186/1475-2859-10-S1-S5.
  • Suezawa, Y., and M. Suzuki. 2007. Bioconversion of ferulic acid to 4-Vinylguaiacol and 4-Ethylguaiacol and of 4-Vinylguaiacol to 4-Ethylguaiacol by halotolerant yeasts belonging to the genus Candida. Bioscience, Biotechnology, and Biochemistry 71 (4):1058–1062. doi:10.1271/bbb.60486.
  • Sugawara, E., S. Hashimoto, Y. Sakurai, and A. Kobayashi. 1994. Formation by yeast of the HEMF (4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone) Aroma component in miso with aging. Bioscience, Biotechnology, and Biochemistry 58 (6):1134–1135. doi:10.1271/bbb.58.1134.
  • Wang, S., H. Zhang, X. Liu, T. Tamura, N. Kyouno, and J. Y. Chen. 2018. Relationship between chemical characteristics and sensory evaluation of koikuchi soy sauce. Analytical Letters 51 (14):2192–2204. doi:10.1080/00032719.2017.1419252.
  • Wolfe, B. E., and R. J. Dutton. 2015. Fermented foods as experimentally tractable microbial ecosystems. Cell 161 (1):49–55. doi:10.1016/j.cell.2015.02.034.
  • Yamabe, S., K. Kobayashi-Hattori, K. Kaneko, H. Endo, and T. Takita. 2007. Effect of soybean varieties on the content and composition of isoflavone in rice-koji miso. Food Chemistry 100 (1):369–374. doi:10.1016/j.foodchem.2005.09.061.
  • Ye, H., S. Z. Dudley, and I. C. Shaw. 2017. Escherichia coli biotransformation of daidzein fermentation products from soy-based foods—relevance to food oestrogenicity-based functionality. International Journal of Food Science & Technology 52 (5):1082–1091. doi:10.1111/ijfs.13410.
  • Yi, C., M.-L. Tsai, and T. Liu. 2017. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception. Carbohydrate Polymers 172 :246–254. doi:10.1016/j.carbpol.2017.05.066.
  • Yoshida, H., J. Yamazaki, S. Ozawa, T. Mizukoshi, and H. Miyano. 2009. Advantage of LC-MS metabolomics methodology targeting hydrophilic compounds in the studies of fermented food samples. Journal of Agricultural and Food Chemistry 57 (4):1119–1126. doi:10.1021/jf803235m.
  • Yu, C. P., Y. W. Hsieh, S. P. Lin, Y. C. Chi, P. Hariharan, P. D. L. Chao, and Y. C. Hou. 2014. Potential modulation on P-glycoprotein and CYP3A by soymilk and miso: In vivo and ex-vivo studies. Food Chemistry 149:25–30. doi:10.1016/j.foodchem.2013.10.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.