385
Views
8
CrossRef citations to date
0
Altmetric
Food Analysis

Trace Elements in Pleurotus Ostreatus, P. Eryngii, and P. Nebrodensis Mushrooms Cultivated on Various Agricultural By-Products

, , , , , , , & show all
Pages 2692-2709 | Received 25 Jan 2019, Accepted 10 Mar 2019, Published online: 22 Apr 2019

References

  • Alaimo, M. G., G. Dongarrà, A. La Rosa, E. Tamburo, G. Vasquez, and D. Varrica. 2018. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy). Ecotoxicology and Environmental Safety 157(8):182–90. doi:10.1016/j.ecoenv.2018.03.080.
  • Alam, N., R. Amin, A. Khan, I. Ara, M. J. Shim, M. W. Lee, and T. S. Lee. 2008. Nutritional analysis of cultivated mushrooms in Bangladesh—Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology 36 (4):228–32. doi:10.4489/MYCO.2008.36.4.228.
  • Aloupi, M., G. Koutrotsios, M. Koulousaris, and N. Kalogeropoulos. 2012. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicology and Environmental Safety 78:184–94. doi:10.1016/j.ecoenv.2011.11.018.
  • Beelman, R. B., M. D. Kalaras, and J. P. Richie. Jr. 2019. Micronutrients and bioactive compounds in mushrooms. A recipe for healthy aging? Nutrition Today 54(1):16–22. doi:10.1097/NT.0000000000000315.
  • Brzezicha-Cirocka, J., M. Grembecka, I. Grochowska, J. Falandysz, and P. Szefer. 2019. Elemental composition of selected species of mushrooms based on a chemometric evaluation. Ecotoxicology and Environmental Safety 173:353–65. doi:10.1016/j.ecoenv.2019.02.036.
  • Byrne, A. R., and M. Tušek-Žnidarič. 1983. Arsenic accumulation in the mushroom Laccaria amethystina. Chemosphere 12(7/8):1113–7. doi:10.1016/0045-6535(83)90265-5.
  • Commission Regulation (EC) No 1881. /2006. Setting maximum levels for certain contaminants in foodstuffs. Accessed December 8, 2018. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20170728&from=EN
  • Das, D., R. Vimala, and N. Das. 2014. Biosorption of Zn(II) onto Pleurotus platypus: 5-Level Box–Behnken design, equilibrium, kinetic and regeneration studies. Ecological Engineering 64 (:136–241. doi:10.1016/j.ecoleng.2013.12.051.
  • Dursun, N., M. M. Özcan, G. Kaşık, and C. Öztürk. 2006. Mineral contents of 34 species of edible mushrooms growing wild in Turkey. Journal of the Science of Food and Agriculture 86(7):1087–94. doi:10.1002/jsfa.2462.
  • EFSA 2015. Scientific opinion on the risks to animal and public health and the environment related to the presence of nickel in feed. EFSA Journal 13(4):4074. doi:10.2903/j.efsa.2015.4074.
  • Falandysz, J., and J. Borovička. 2013. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology 97(2):477–501. doi:10.1007/s00253-012-4552-8.
  • Falandysz, J., M. Mędyk, and R. Treu. 2018. Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environmental Science and Pollution Research 25(25):25190–206. doi:10.1007/s11356-018-2603-0.
  • Falandysz, J., K. Szymczyk, H. Ichihashi, L. Bielawhski, M. Gucia, A. Frankowhska, and S. I. Yamasaki. 2001. ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives & Contaminants 18(6):503–13. doi:10.1080/02652030119625.
  • Favero, N., G. Bressa, and P. Costa. 1990. Response of Pleurotus ostreatus to cadmium exposure. Ecotoxicology and Environmental Safety 20(1):1–6. doi:10.1016/0147-6513(90)90039-8.
  • Feeney, M. J., A. M. Miller, and P. Roupas. 2014. Mushrooms—biologically distinct and nutritionally unique. Exploring a ‘Third Food Kingdom. Nutrition Today 49 :301–7. doi:10.1097/NT.0000000000000063.
  • García, M. A., J. Alonso, M. I. Fernández, and M. J. Melgar. 1998. Lead content in edible wild mushrooms in northwest spain as indicator of environmental contamination. Archives of Environmental Contamination and Toxicology 34(4):330–5. doi:10.1007/s002449900326.
  • Gast, C. H., E. Jansen, J. Bierling, and L. Haanstra. 1988. Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17(4):789–99. doi:10.1016/0045-6535(88)90258-5.
  • Golak-Siwulska, I., A. Kałużewicz, T. Spiżewski, M. Siwulski, and K. Sobieralski. 2018. Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.). Folia Horticulturae 30(2):191–201. doi:10.2478/fhort-2018-0012.
  • Gucia, M., G. Jarzyńska, E. Rafał, M. Roszak, A. K. Kojta, I. Osiej, and J. Falandysz. 2012. Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota Procera) and soils beneath fruiting bodies collected from Northern Poland. Environmental Science and Pollution Research 19(2):416–31. doi:10.1007/s11356-011-0574-5.
  • Isildak, O., I. Turkekul, M. Elmastas, and H. Y. Aboul‐Enein. 2007. Bioaccumulation of heavy metals in some wild‐grown edible mushrooms. Analytical Letters 40(6):1099–116. doi:10.1080/00032710701297042.
  • JEFCA and WHO 2011. Safety evaluation of certain contaminants in food. Prepared by the sixty-fourth meeting of the joint FAO/WHO expert committee on food additives (JECFA). Vol. 82. Geneva: World Health Organization. http://apps.who.int/iris/bitstream/handle/10665/44520/9789241660631_eng.pdf?sequence=1.
  • Kalač, P., and L. Svoboda. 2000. A review of trace element concentrations in edible mushrooms. Food Chemistry 69(3):273–81. doi:10.1016/S0308-8146(99)00264-2.
  • Kalač, P. 2009. Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chemistry 113(1):9–16. doi:10.1016/j.foodchem.2008.07.077.
  • Kalač, P. 2010. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chemistry 122(1):2–15. doi:10.1016/j.foodchem.2010.02.045.
  • Kalač, P. 2013. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture 93(2):209–18. doi:10.1002/jsfa.5960.
  • Khani, R., M. Moudi, and V. Khojeh. 2017. Contamination level, distribution and health risk assessment of heavy and toxic metallic and metalloid elements in a cultivated mushroom Pleurotus florida (Mont.) Singer. Environmental Science and Pollution Research 24(5):4699–708. doi:10.1007/s11356-016-8222-8.
  • Koutrotsios, G., K. C. Mountzouris, I. Chatzipavlidis, and G. I. Zervakis. 2014. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi—Assessment of their effect on the final product and spent substrate properties. Food Chemistry 161(October):127–35. doi:10.1016/j.foodchem.2014.03.121.
  • Koutrotsios, G., N. Kalogeropoulos, A. C. Kaliora, and G. I. Zervakis. 2018. Toward an increased functionality in oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. Journal of Agricultural and Food Chemistry 66 (24):5971–83. doi:10.1021/acs.jafc.8b01532.
  • Li, Q., W. Huang, C. Xiong, and J. Zhao. 2018. Transcriptome Analysis Reveals the Role of Nitric Oxide in Pleurotus Eryngii Responses to Cd2+stress. Chemosphere 201(June):294–302. doi:10.1016/j.chemosphere.2018.03.011.
  • Li, X., Y. Wang, Y. Pan, H. Yu, X. Zhang, Y. Shen, S. Jiao, K. Wu, G. La, Y. Yuan, and S. Zhang. 2017. Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. Journal of Hazardous Materials 330(May):1–8. doi:10.1016/j.jhazmat.2017.01.047.
  • Maihara, V. A., P. L. Moura, M. G. Catharino, L. P. Castro, and R. C. L. Figueira. 2008. Arsenic and cadmium content in edible mushrooms from Sao Paulo, Brazil determined by INAA and GF AAS. Journal of Radioanalytical and Nuclear Chemistry 278 (2):395–7. doi:10.1007/s10967-008-0807-3.
  • Malik, A. 2004. Metal bioremediation through growing cells. Environment International 30 (2):261–78. doi:10.1016/j.envint.2003.08.001.
  • Meisch, H. U., and J. A. Schmitt. 1986. Characterization studies on cadmium-mycophosphatin from the mushroom Agaricus macrosporus. Environmental Health Perspectives 65(3):29–32. doi:10.1289/ehp.866529.
  • Mikiashvili, N. A., D. Chichua, and V. Elisashvili. 2004. Lignocellulolytic enzyme activities of medicinally important basidiomycetes from different ecological niches. International Journal of Medicinal Mushrooms 6(1):63–72. doi:10.1615/IntJMedMushr.v6.i1.70.
  • Mleczek, M.,. M. Siwulski, K. Stuper-Szablewska, I. Rissmann, K. Sobieralski, and P. Goliński. 2013. Accumulation of elements by edible mushroom species: Part I. Problem of trace element toxicity in mushrooms. Journal of Environmental Science and Health, Part B 48(1):69–81. doi:10.1080/03601234.2012.716733.
  • Mleczek, M.,. M. Siwulski, K. Stuper-Szablewska, K. Sobieralski, Z. Magdziak, and P. Goliński. 2013. Accumulation of elements by edible mushroom species II. A comparison of aluminum, barium and nutritional element contents. Journal of Environmental Science and Health, Part B 48 (4):308–17. doi:10.1080/03601234.2013.743799.
  • Mleczek, Μ., P. Rzymski, A. Budka, M. Siwulski, A. Jasińska, P. Kalač, B. Poniedziałek, M. Gąsecka, and P. Niedzielski. 2018. Elemental characteristics of mushroom species cultivated in China and Poland. Journal of Food Composition and Analysis 66(March):168–78. doi:10.1016/j.jfca.2017.12.018.
  • Muszyńska, B., A. Grzywacz-Kisielewska, K. Kała, and J. Gdula-Argasińska. 2018. Anti-inflammatory properties of edible mushrooms: A review. Food Chemistry 243:373–81. doi:10.1016/j.foodchem.2017.09.149.
  • Rathore, H., S. Prasad, and S. Sharma. 2017. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 5(2):35–46. doi:10.1016/j.phanu.2017.02.001.
  • Roncero-Ramos, I., and C. Delgado-Andrade. 2017. The beneficial role of edible mushrooms in human health. Current Opinion in Food Science 14 :122–8. doi:10.1016/j.cofs.2017.04.002.
  • Royse, D. J. 2014. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina. International Conference on Mushroom Biology and Mushroom Products (ICMBMP8). no. Usitc 2010:2010–15. http://www.whsmbmp.org/1/01.pdf
  • Seyfferth, A. I., C. McClatchy, and M. Paukett. 2016. Arsenic, lead, and cadmium in U.S. mushrooms and substrate in relation to dietary exposure. Environmental Science & Technology 50(17):9661–70. doi:10.1021/acs.est.6b02133.
  • Siwulski, M., M. Mleczek, P. Rzymski, A. Budka, A. Jasińska, P. Niedzielski, P. Kalač, M. Gąsecka, S. Budzyńska, and P. Mikołajczak. 2017. Screening the multi-element content of Pleurotus mushroom species using inductively coupled plasma optical emission spectrometer (ICP-OES). Food Analytical Methods 10(2):487–96. doi:10.1007/s12161-016-0608-1.
  • Siwulski, M., P. Rzymski, A. Budka, P. Kalač, S. Budzyńska, L. Dawidowicz, E. Hajduk, L. Kozak, J. Budzulak, K. Sobieralski, and P. Niedzielski. 2019. The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies. European Food Research and Technology 245(2):419–31. doi:10.1007/s00217-018-3174-5.
  • Stagakis, M., D. Costopoulou, I. Vassiliadou, S. Karavoltsos, A. Sakellari, N. Kalogeropoulos, and L. Leondiadis. 2016. Determination of polychlorinated biphenyls in Aegean fish and seafood. Analytical Letters 49(7):1114–26. doi:10.1080/00032719.2015.1070161.
  • Strmisková, G., F. Strmiska, and J. Dubravický. 1992. Mineral composition of oyster mushroom. Food / Nahrung 36(2):210–2. doi:10.1002/food.19920360218.
  • Svoboda, L., and V. Chrastný. 2008. Levels of eight trace elements in edible mushrooms from a rural area. Food Additives and Contaminants: Part A 25(1):51–8. doi:10.1080/02652030701458519.
  • Türkmen, M., and D. Budur. 2018. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chemistry 254(July):256–9. doi:10.1016/j.foodchem.2018.02.010.
  • US EPA (U.S. Environmental Protection Agency) 1997. Guidelines establishing test procedures for the analysis of pollutants (App. B, Part 136, definition and procedures for the determination of the method detection limit). Washington: U.S. Code of Federal Regulations, 265–267
  • Venturella, G., and G. I. Zervakis. 2017. Pleurotus nebrodensis. In The top 50 mediterranean island plants update 2017. eds. S. Pasta, A. Perez-Graber, L. Fazan and B. de Montmollin. Accessed December 20, 2018. http://top50.iucn-mpsg.org/species/39
  • Vimala, R., and N. Das. 2011. Mechanism of Cd(II) adsorption by macrofungus Pleurotus platypus. Journal of Environmental Sciences 23(2):288–93. doi:10.1016/S1001-0742(10)60405-6.
  • Yin, L. L., G. Q. Shi, Q. Tian, T. Shen, Y. Q. Ji, and G. Zeng. 2012. Determination of the metals by ICP-MS in wild mushrooms from Yunnan, China. Journal of Food Science 77(8):T151–5. doi:10.1111/j.1750-3841.2012.02810.x.
  • Zervakis, G. I., S. Ntougias, M. L. Gargano, M. I. Besi, E. Polemis, M. A. Typas, and G. Venturella. 2014. A reappraisal of the Pleurotus eryngii complex—New species and taxonomic combinations based on the application of a polyphasic approach, and an identification key to Pleurotus taxa associated with Apiaceae plants. Fungal Biology 118(9–10):814–34. doi:10.1016/j.funbio.2014.07.001.
  • Zhang, S., Zhang, X. C. Chang, Z. Yuan, T. Wang, Y. Zhao, X. Yang, Y. Zhang, G. La, K. Wu, Z., et al. 2016. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere 150(May):33–9. doi:10.1016/j.chemosphere.2016.02.003.
  • Zhu, F., Qu, L. W. Fan, M. Qiao, H. Hao, X. Wang. and X. 2011. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environmental Monitoring and Assessment 179(1-4):191–9. doi:10.1007/s10661-010-1728-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.