521
Views
10
CrossRef citations to date
0
Altmetric
Spectroscopy

Colorimetric Sensing of Nitroaromatic Energetic Materials Using Surfactant-Stabilized and Dithiocarbamate-Functionalized Gold Nanoparticles

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2794-2808 | Received 19 Feb 2019, Accepted 14 Apr 2019, Published online: 06 May 2019

References

  • Adams, V. H. 2015. Wildlife toxicity assessment for N-Methyl-N-2,4,6-Tetranitroaniline (Tetryl). In Wildlife toxicity assessments for chemicals of military concern, eds. M. A. Williams, G. Reddy, M. J. Quinn Jr., and M. S. Johnson, 205–16. Oxford, UK: Elsevier.
  • Akhgari, F., H. Fattahi, and Y. M. Oskoei. 2015. Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sensors and Actuators B: Chemical 221:867–78. doi:10.1016/j.snb.2015.06.146.
  • Chiappe, C., and D. Pieraccini. 2006. Determination of ionic liquids solvent properties using an unusual probe: The electron donor–acceptor complex between 4,4′-bis(dimethylamino)-benzophenone and Tetracyanoethene. The Journal of Physical Chemistry A 110 (14):4937–41. doi:10.1021/jp057236f.
  • Colton, R. J., and J. N. Russell. 2003. Making the world a safer place. Science 299 (5611):1324–5. doi:10.1126/science.1080688.
  • Dasary, S. S. R., A. K. Singh, D. Senapati, H. Yu, and P. C. J. Ray. 2009. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Journal of the American Chemical Society 131 (38):13806–12. doi:10.1021/ja905134d.
  • Devi, S., B. Singh, A. K. Paul, and S. Tyagi. 2016. Highly sensitive and selective detection of trinitrotoluene using cysteine-capped gold nanoparticles. Analytical Methods 8 (22):4398–405. doi:10.1039/C6AY01036A.
  • dos Reis, L. C., L. Vidal, and A. Canals. 2017. Graphene oxide/Fe3O4 as sorbent for magnetic solid-phase extraction coupled with liquid chromatography to determine 2,4,6-trinitrotoluene in water samples. Analytical and Bioanalytical Chemistry 409:2665–74. doi:10.1007/s00216-017-0211-3.
  • Erçağ, E., A. Üzer, Ş. Eren, Ş. Sağlam, H. Filik, and R. Apak. 2011. Rapid detection of nitroaromatic and nitramine explosives on chromatographic paper and their reflectometric sensing on PVC tablets. Talanta 85 (4):2226–32. doi:10.1016/j.talanta.2011.07.080.
  • Erçağ, E., A. Üzer, and R. Apak. 2009. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor. Talanta 78 (3):772–80. doi:10.1016/j.talanta.2008.12.042.
  • Garcia-Reyes, J. F., J. D. Harper, G. A. Salazar, N. A. Charipar, Z. Ouyang, and R. G. Cooks. 2011. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Analytical Chemistry 83 (3):1084–92. doi:10.1021/ac1029117.
  • Humeres, E., N. A. Debacher, M. M. de, S. Sierra, J. Dimas Franco, and A. Schutz. 1998. Mechanisms of acid decomposition of dithiocarbamates. I. Alkyl dithiocarbamates. The Journal of Organic Chemistry 63 (5):1598–603. doi:10.1021/jo971869b.
  • Idros, N., M. Ho, M. Pivnenko, M. Qasim, H. Xu, Z. Gu, and D. Chu. 2015. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles. Sensors 15 (6):12891–905. doi:10.3390/s150612891.
  • Itoh, H., K. Naka, and Y. Chujo. 2004. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. Journal of the American Chemical Society 126 (10):3026–7. doi:10.1021/ja039895g.
  • Jamil, A. K. M., E. L. Izake, A. Sivanesan, R. Agoston, G. A. Ayoko, and P. M. Fredericks. 2015. A homogeneous surface-enhanced Raman scattering platform for ultra-trace detection of trinitrotoluene in the environment. Analytical Methods 7 (9):3863–8. doi:10.1039/C5AY00739A.
  • Jana, J., L. Gearheart, and C. J. Murphy. 2001. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17 (22):6782–6. doi:10.1021/la0104323.
  • Jiang, Y., H. Zhao, N. Zhu, Y. Lin, P. Yu, and L. Mao. 2008. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angewandte Chemie International Edition 47 (45):8601–4. doi:10.1002/anie.200804066.
  • Jiang, Z., Z. Feng, T. Li, F. Li, F. Zhong, J. Xie, and X. Yi. 2001. Resonance scattering spectroscopy of gold nanoparticle. Science in China Series B: Chemistry 44 (2):175–81. doi:10.1007/BF02879535..
  • Khanniche, S., D. Mathieu, F. Pereira, C. Frenois, D. Colin, C. Barthet, and L. Hairault. 2017. Quantitative evaluation of the responses of a gravimetric gas sensor based on mesoporous functionalized silica: Application to 2,4-DNT and TNT detection. Sensors and Actuators B: Chemical 248:470–80. doi:10.1016/j.snb.2017.03.137.
  • Li, L., B. Li, D. Cheng, and L. Mao. 2010. Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chemistry 122 (3):895–900. doi:10.1016/j.foodchem.2010.03.032.
  • Li, Y., R. Lu, J. Shen, W. Han, X. Sun, J. Li, and L. Wang. 2017. Electrospun flexible poly(bisphenol A carbonate) nanofibers decorated with Ag nanoparticles as effective 3D SERS substrates for trace TNT detection. The Analyst 142 (24):4756–64. doi:10.1039/C7AN01639E.
  • López-López, M., and C. García-Ruiz. 2014. Infrared and Raman spectroscopy techniques applied to identification of explosives. Trends in Analytical Chemistry 54:36–44. doi:10.1016/j.trac.2013.10.011.
  • Ma, Y., S. Huang, L. Wang, S. Huang, and L. Wang. 2013. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation. Talanta 116:535–40. doi:10.1016/j.talanta.2013.07.033.
  • Martynov, I., Y. Kuzishchin, D. Dovzhenko, G. Kotkovskii, and A. Chistyakov. 2015. Ionization of the nitroaromatic compounds in an ion mobility spectrometer with an ion source based on porous silicon under laser irradiation. Physics Procedia 73:163–7. doi:10.1016/j.phpro.2015.09.147.
  • Mulliken, R. S. 1952. Molecular Compounds and their Spectra. II. Journal of the American Chemical Society 74 (3):811–24. doi:10.1021/ja01123a067.
  • Rapp-Wright, H., G. McEneff, B. Murphy, S. Gamble, R. Morgan, M. Beardah, and L. Barron. 2017. Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Journal of Hazardous Materials 329:11–21. doi:10.1016/j.jhazmat.2017.01.008.
  • Sağlam, Ş., A. Üzer, Y. Tekdemir, E. Erçağ, and R. Apak. 2015. Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly(o-phenylenediamine-aniline) film modified glassy carbon electrode. Talanta 139:181–8. doi:10.1016/j.talanta.2015.02.059.
  • Salinas, Y., A. Agostini, É. Pérez-Esteve, R. Martínez-Máñez, F. Sancenón, M. Dolores Marcos, J. Soto, A. M. Costero, S. Gil, M. Parra, and P. Amorós. 2013. Fluorogenic detection of tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry A 1 (11):3561–4. doi:10.1039/c3ta01438j.
  • Shahdost-fard, F., and M. Roushani. 2016. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe. Biosensors and Bioelectronics 87:724–31. doi:10.1016/j.bios.2016.09.048.
  • Sharma, S. P., and S. C. Lahiri. 2008. Absorption spectroscopic and FTIR studies on EDA complexes between TNT (2,4,6-trinitrotoluene) with amines in DMSO and determination of the vertical electron affinity of TNT. Spectrochimica Acta A 70 (1):144–53. doi:10.1016/j.saa.2007.07.025.
  • Shi, Y., W. Wang, and J. Zhan. 2016. A positively charged silver nanowire membrane for rapid on-site swabbing extraction and detection of trace inorganic explosives using a portable Raman spectrometer. Nano Research 9 (8):2487–97. doi:10.1007/s12274-016-1135-5.
  • Sigman, M. E., and C. Y. J. Ma. 2001. Detection limits for GC/MS analysis of organic explosives. Journal of Forensic Sciences 46 (1):6–11. doi:10.1520/JFS14904J.
  • Singh, S. 2007. Sensors—An effective approach for the detection of explosives. Journal of Hazardous Materials 144 (1–2):15–28. doi:10.1016/j.jhazmat.2007.02.018.
  • Tian, X., H. Peng, Y. Li, C. Yang, Z. Zhou, and Y. Wang. 2017. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater. Sensors and Actuators B: Chemical 243:1002–9. doi:10.1016/j.snb.2016.12.079.
  • Turkevich, J., P. C. Stevenson, and J. Hillier. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11:55–75. doi:10.1039/df9511100055.
  • Üzer, A., E. Erçağ, and R. Apak. 2004. Selective spectrophotometric determination of trinitrotoluene, trinitrophenol, dinitrophenol and mononitrophenol. Analytica Chimica Acta 505 (1):83–93. doi:10.1016/S0003-2670(03)00674-3.
  • Vickers, M. S., J. Cookson, P. D. Beer, P. T. Bishop, and B. Thiebaut. 2006. Dithiocarbamate ligand stabilised gold nanoparticles. Journal of Materials Chemistry A 16 (2):209–15. doi:10.1039/B509173J.
  • von Meisenheimer, J. 1902. Ueber Reactionen aromatischer Nitrokörper. Justus Liebig's Annalen Der Chemie 323 (2):205–246. doi:10.1002/jlac.19023230205.
  • Walsh, M. E. 2001. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 54 (3):427–38. doi:10.1016/S0039-9140(00)00541-5.
  • Xu, S., and H. Lu. 2016. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT. Biosensors and Bioelectronics 85:950–6. doi:10.1016/j.bios.2016.06.020.
  • Zhang, R., C. Zhang, F. Zheng, X. Li, C. L. Sun, and W. Chen. 2018. Nitrogen and sulfur co-doped graphene nanoribbons: A novel metal-free catalyst for high performance electrochemical detection of 2, 4, 6-trinitrotoluene (TNT). Carbon 126:328–37. doi:10.1016/j.carbon.2017.10.042.
  • Zhao, Y., W. Pérez-Segarra, Q. Shi, and A. Wei. 2005. Dithiocarbamate assembly on gold. Journal of the American Chemical Society 127 (20):7328–9. doi:10.1021/ja050432f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.