403
Views
13
CrossRef citations to date
0
Altmetric
Fluorescence

Poly(adenine) DNA-Templated Gold Nanocluster-Based Fluorescent Strategy for the Determination of Thiol-Containing Pharmaceuticals

, , &
Pages 2300-2311 | Received 07 Jan 2019, Accepted 16 Apr 2019, Published online: 30 Apr 2019

References

  • Ensafi, A. A., H. Karimi-Maleh, S. Mallakpour, and M. Hatami. 2011. Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sensors and Actuators B: Chemical 155 (2):464–72. doi:10.1016/j.snb.2010.12.048.
  • Feng, D. Q., M. Chen, G. Liu, W. Zhu, W. Sun, R. Zhu, and W. Wang. 2015. A novel resonance light scattering sensing for glucose based on the conversion of gold nanoclusters into gold nanoparticles. Sensors and Actuators B: Chemical 219:133–8. doi:10.1016/j.snb.2015.05.019.
  • Feng, L. P., Z. Z. Sun, H. Liu, M. Liu, Y. Jiang, C. Fan, Y. Y. Cai, S. Zhang, J. H. Xu, and H. Wang. 2017. Silver nanoclusters with enhanced fluorescence and specific ion recognition capability triggered by alcohol solvents: A highly selective fluorimetric strategy for detecting iodide ions in urine. Chemical Communications 53 (68):9466–9. doi:10.1039/C7CC04924B.
  • Ge, J., Z. Z. Dong, D. M. Bai, L. Zhang, Y. L. Hu, D. Y. Ji, and Z. H. Li. 2017. A novel label-free fluorescent molecular beacon for the detection of 3′-5′ exonuclease enzymatic activity using DNA-templated copper nanoclusters. New Journal of Chemistry 41 (18):9718–23. doi:10.1039/C7NJ01761H.
  • Ge, J., L. Zhang, Z. Z. Dong, Q. Y. Cai, and Z. H. Li. 2016. Sensitive and label-free T4 polynucleotide kinase/phosphatase detection based on poly(thymine)-templated copper nanoparticles coupled with nicking enzyme-assisted signal amplification. Analytical Methods 8 (13):2831–6. doi:10.1039/C6AY00306K.
  • Giljanovic, J., M. Brkljaca, and A. Prkic. 2011. Flow injection spectrophotometric determination of N-acetyl-L-cysteine as a complex with palladium (II.). Molecules 16:7224–36. doi:10.3390/molecules16097224.
  • Guo, L. Y., D. L. Chen, and M. H. Yang. 2017a. DNA-templated silver nanoclusters for fluorometric determination of the activity and inhibition of alkaline phosphatase. Microchimica Acta 184 (7):2165–70. doi:10.1007/s00604-017-2199-y.
  • Guo, L. Y., T. Tang, L. S. Hu, M. H. Yang, and X. Chen. 2017b. Fluorescence assay of Fe (III) in human serum samples based on pH dependent silver nanoclusters. Sensors and Actuators B: Chemical 241:773–8. doi:10.1016/j.snb.2016.11.003.
  • Guo, Y. M., F. Cao, X. Lei, L. Mang, S. Cheng, and J. Song. 2016. Fluorescent copper nanoparticles: Recent advances in synthesis and applications for sensing metal ions. Nanoscale 8 (9):4852–63. doi:10.1039/C6NR00145A.
  • Han, H. X., X. Tian, X. J. Kong, R. Q. Yu, and X. Chu. 2015. A new label-free and turn-on fluorescence probe for hydrogen peroxide and glucose detection based on DNA-silver nanoclusters. Analytical Methods 7 (19):7989–94. [Mismatch] doi:10.1039/c5ay01546d.
  • Hu, Y. H., Y. M. Wu, T. T. Chen, X. Chu, and R. Q. Yu. 2013. Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols. Analytical Methods 5 (14):3577–81. doi:10.1039/c3ay40088c.
  • Huang, Y., S. L. Zhao, M. Shi, and H. Liang. 2011. A microchip electrophoresis strategy with online labeling and chemiluminescence detection for simultaneous quantification of thiol drugs. Journal of Pharmaceutical and Biomedical Analysis 55 (5):889–94. doi:10.1016/j.jpba.2011.03.007.
  • Jiang, X. Y., D. Q. Feng, G. Liu, D. Fan, and W. Wang. 2016. A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters. Sensors and Actuators B: Chemical 232:276–82. doi:10.1016/j.snb.2016.03.100.
  • Jin, X., S. Asghar, M. Zhang, Z. Chen, L. Huang, Q. Ping, and Y. Xiao. 2018. N-acetylcysteine modified hyaluronic acid-paclitaxel conjugate for efficient oral chemotherapy through mucosal bioadhesion ability. Colloids and Surfaces B: Biointerfaces 172 :655–64. doi:10.1016/j.colsurfb.2018.09.025.
  • Jin, R., C. Zeng, M. Zhou, and Y. Chen. 2016. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chemical Reviews 116 (18):10346–413. doi:10.1021/acs.chemrev.5b00703.
  • Klein-Schwartz, W., and S. Doyon. 2011. Intravenous acetylcysteine for the treatment of acetaminophen overdose. Expert Opinion on Pharmacotherapy 12 (1):119–30. doi:10.1517/14656566.2011.537261.
  • Li, Z. Y., Y. T. Wu, and W. L. Tseng. 2015. UV light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: Application to ratiometric fluorescent sensing of nucleic acids. ACS Applied Materials & Interfaces 7 (42):23708–16. doi:10.1021/acsami.5b07766.
  • Lian, J., Q. Liu, Y. Jin, and B. X. Li. 2017. Histone-DNA interaction: An effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters. Chemical Communications 53 (93):12568–71. doi:10.1039/C7CC07424G.
  • Liu, G., D. Q. Feng, D. Hua, T. Liu, G. Qi, and W. Wang. 2017a. Fluorescence enhancement of terminal amine assembled on gold nanoclusters and its application to ratiometric lysine detection. Langmuir 33 (51):14643–8. doi:10.1021/acs.langmuir.7b02614.
  • Liu, G., J. Li, D. Q. Feng, J. J. Zhu, and W. Wang. 2017b. Silver nanoclusters beacon as stimuli-responsive versatile platform for multiplex DNAs detection and aptamer-substrate complexes sensing. Analytical Chemistry 89 (1):1002–8. doi:10.1021/acs.analchem.6b04362.
  • Lu, C., G. Liu, J. Jia, Y. Gui, Y. Liu, M. Zhang, Y. Liu, S. Li, and C. Yu. 2011. Liquid chromatography tandem mass spectrometry method for determination of N-acetylcysteine in human plasma using an isotope-labeled internal standard. Biomedical Chromatography 25 (4):427–31. doi:10.1002/bmc.1465.
  • Ourique, A. F., K. Coradini, P. D S. Chaves, S. C. Garcia, A. R. Pohlmann, S. S. Guterres, and R. C. Ruver Beck. 2013. A LC-UV method to assay N-acetylcysteine without derivatization: Analyses of pharmaceutical products. Analytical Methods 5 (13):3321–7. doi:10.1039/c3ay40426a.
  • Qing, Z. H., X. X. He, D. G. He, K. M. Wang, F. Z. Xu, T. P. Qing, and X. H. Yang. 2013. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angewandte Chemie International Edition 52 (37):9719–22. doi:10.1002/anie.201304631.
  • Rotaru, A., S. Dutta, E. Jentzsch, K. Gothelf, and A. Mokhir. 2010. Selective dsDNA-templated formation of copper nanoparticles in solution. Angewandte Chemie International Edition 49 (33):5665–7. doi:10.1002/anie.200907256.
  • Tao, Y., M. Q. Li, J. S. Ren, and X. G. Qu. 2015. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chemical Society Reviews 44 (23):8636–63. doi:10.1039/C5CS00607D.
  • Tian, X., X. J. Kong, Z. M. Zhu, T. T. Chen, and X. Chu. 2015. A new label-free and turn-on strategy for endonuclease detection using a DNA-silver nanocluster probe. Talanta 131:116–20. doi:10.1016/j.talanta.2014.07.092.
  • Tsikas, D., J. Sandmann, M. Ikic, J. Fauler, D. Stichtenoth, and J. C. Frölich. 1998. Analysis of cysteine and N-acetylcysteine in human plasma by high-performance liquid chromatography at the basal state and after oral administration of N-acetylcysteine. Journal of Chromatography B: Biomedical Sciences and Applications 708 (1–2):55–60. doi:10.1016/S0378-4347(97)00670-1.
  • Wang, H. B., H. Y. Bai, G. L. Dong, and Y. M. Liu. 2019. DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: A sensitive fluorescent biosensing platform for DNA detection. Nanoscale Advances 1 (4):1482–8. doi:10.1039/C8NA00278A.
  • Wang, H. B., Y. Li, H. Y. Bai, and Y. M. Liu. 2018a. Fluorescent determination of dopamine using polythymine-templated copper nanoclusters. Analytical Letters 51 (18):2868–77. doi:10.1080/00032719.2018.1454457.
  • Wang, H. B., Y. Li, H. Y. Bai, and Y. M. Liu. 2018b. DNA-templated Au nanoclusters and MnO2 sheets: A label-free and universal fluorescence biosensing platform. Sensors and Actuators B: Chemical 259:204–10. doi:10.1016/j.snb.2017.12.048.
  • Wang, H. B., Y. Li, H. Y. Bai, Z. P. Zhang, Y. H. Li, and Y. M. Liu. 2018c. Development of rapid and label-free fluorescence sensing of tetracyclines in milk based on poly(Adenine) DNA-templated Au nanoclusters. Food Analytical Methods 11 (11):3095–02. doi:10.1007/s12161-018-1289-8.
  • Wang, H. B., H. D. Zhang, Y. Chen, and Y. M. Liu. 2015. A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosensors and Bioelectronics 74:581–6. doi:10.1016/j.bios.2015.07.021.
  • Zhang, Z. Q., T. T. Liu, S. Wang, J. Ma, T. Zhou, F. Wang, X. F. Wang, and G. Zhang. 2019. DNA-templated gold nanocluster as a novel fluorometric sensor for glutathione determination. Journal of Photochemistry and Photobiology A: Chemistry 370:89–93. doi:10.1016/j.jphotochem.2018.10.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.