513
Views
8
CrossRef citations to date
0
Altmetric
Sensors

Colorimetric Sensing of the Insensitive Energetic Material 3-Nitro-1,2,4-triazol-5-one (NTO) Using l-Cysteine Stabilized Gold Nanoparticles and Copper(II)

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2809-2821 | Received 01 Feb 2019, Accepted 06 May 2019, Published online: 17 May 2019

References

  • Can, Z., A. Üzer, Y. Tekdemir, E. Ercağ, L. Türker, and R. Apak. 2012. Spectrophotometric and chromatographic determination of insensitive energetic materials: HNS and NTO, in the presence of sensitive nitro-explosives. Talanta 90:69–76. doi: 10.1016/j.talanta.2011.12.077.
  • Chen, X., Y. Zu, H. Xie, A.-M. Kemas, and Z. Gao. 2011. Coordination of mercury(II) to gold nanoparticle associated nitrotriazole towards sensitive colorimetric detection of mercuric ion with a tunable dynamic range. The Analyst 136 (8):1690–6. doi: 10.1039/c0an00903b.
  • Damiri, S., H.-R. Pouretedal, and A. Heidari. 2016. Fabrication of a nanostructured TiO2/carbon nanotube composite electrode for voltammetric and impedimetric determination of NTO explosive in the water and soil samples. International Journal of Environmental Analytical Chemistry 96 (11):1059–73. doi: 10.1080/03067319.2016.1232722.
  • Dasary, S. S. R., A. K. Singh, D. Senapati, H. Yu, and P. C. J. Ray. 2009. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Journal of the American Chemical Society 131 (38):13806–12. doi: 10.1021/ja905134d.
  • DeTata, D., P. Collins, and A. McKinley. 2013. A fast liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) method for the identification of organic explosives and propellants. Forensic Science International 233 (1–3):63–74. doi: 10.1016/j.forsciint.2013.08.007.
  • Devi, S., B. Singh, A. K. Paul, and S. Tyagi. 2016. Highly sensitive and selective detection of trinitrotoluene using cysteine-capped gold nanoparticles. Analytical Methods 8 (22):4398–405. doi: 10.1039/C6AY01036A.
  • Guo, Y., X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong, and B. Wang. 2014. Tuning the luminescence of metal–organic frameworks for detection of energetic heterocyclic compounds. Journal of the American Chemical Society 136 (44):15485–8. doi: 10.1021/ja508962m.
  • Hakonen, A., P.-O. Andersson, M. Stenbaek Schmidt, T. Rindzevicius, and M. Käll. 2015. Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Analytica Chimica Acta 893:1–13. doi: 10.1016/j.aca.2015.04.010.
  • He, X., Y. Liu, X. Xue, J. Liu, Y. Liu, and Z. Li. 2017. Ultrasensitive detection of explosives via hydrophobic condensation effect on biomimetic SERS platforms. Journal of Materials Chemistry C 5 (47):12384–92. doi: 10.1039/C7TC04325B.
  • Jiang, Y., H. Zhao, N. Zhu, Y. Lin, P. Yu, and L. Mao. 2008. A Simple assay for direct colorimetric Visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angewandte Chemie International Edition 47 (45):8601–4. doi: 10.1002/anie.200804066.
  • Le Campion, L., M.-T. Adeline, and J. Ouazzani. 1997. Separation of NTO related 1,2,4-triazole-3-one derivatives by a high performance liquid chromatography and capillary electrophoresis. Propellants, Explosives, Pyrotechnics 22 (4):233–7. doi: 10.1002/prep.19970220410.
  • Mocanu, A., I. Cernica, G. Tomoaia, L.-D. Bobos, O. Horovitz, and M. Tomoaia-Cotisel. 2009. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids and Surfaces A: Physicochemical and Engineering Aspects 338 (1–3):93–101. doi: 10.1016/j.colsurfa.2008.12.041.
  • Moram, S.-S.-B., C. Byram, S.-N. Shibu, B.-M. Chilukamarri, and V.-R. Soma. 2018. Ag/Au nanoparticle-loaded paper-based versatile surface-enhanced Raman spectroscopy substrates for multiple explosives detection. ACS Omega 3 (7):8190–201. doi: 10.1021/acsomega.8b01318.
  • Oehrle, S.-A. 1997. Analysis of 3-nitro-1,2,4-triazole-5-one (NTO) in explosive mixtures by capillary electrophoresis. Propellants, Explosives, Pyrotechnics 22 (1):1–3. doi: 10.1002/prep.19970220102.
  • Riskin, M., R. Tel-Vered, and I. Willner. 2010. Imprinted Au-Nanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Advanced Materials 22 (12):1387–91. doi: 10.1002/adma.200903007.
  • Russell, A.-L., J.-M. Seiter, J.-G. Coleman, B. Winstead, and A.-J. Bednar. 2014. Analysis of munitions constituents in IMX formulations by HPLC and HPLC–MS. Talanta 128:524–30. doi: 10.1016/j.talanta.2014.02.013.
  • Sreeprasad, T. S., and T. Pradeep. 2011. Reversible assembly and disassembly of gold nanorods induced by EDTA and its application in SERS tuning. Langmuir 27 (7):3381–90. doi: 10.1021/la104828e.
  • Sunku, S., M.-K. Gundawar, A.-K. Myakalwar, P.-P. Kiran, S.-P. Tewari, and S.-V. Rao. 2013. Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX. Spectrochimica Acta Part B: Atomic Spectroscopy 79–80:31–8. doi: 10.1016/j.sab.2012.11.002.
  • Rao, E.-N., S. Sunku, S. P. Tewari, M.-K. Gundawar, and S. V. Rao. 2013. Investigation of molecular and elemental species dynamics in NTO, TNT, and ANTA using femtosecond LIBS technique. Paper presented at the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV 8710:871012, Baltimore, Maryland, United States, May 29. doi:10.1117/12.2015685.
  • Tabrizchi, M., and V. Ilbeigi. 2010. Detection of explosives by positive corona discharge ion mobility spectrometry. Journal of Hazardous Materials 176 (1–3):692–6. doi: 10.1016/j.jhazmat.2009.11.087.
  • Walsh, M.-E. 2016. Analytical methods for detonation residues of insensitive munitions. Journal of Energetic Materials 34 (1):76–91. doi: 10.1080/07370652.2014.999173.
  • Weng, Z., H. Wang, J. Vongsvivut, R. Li, A.-M. Glushenkov, J. He, Y. Chen, C.-J. Barrow, and W. Yang. 2013. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Analytica Chimica Acta 803:128–34. doi: 10.1016/j.aca.2013.09.036.
  • Xu, Z., and X. Meng. 2012. Detection of 3-nitro-1,2,4-triazol-3-one (NTO) by surface-enhanced Raman spectroscopy. Vibrational Spectroscopy 63:390–5. doi: 10.1016/j.vibspec.2012.08.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.