532
Views
11
CrossRef citations to date
0
Altmetric
Nanotechnology

Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole Hybrid Nanocomposites for Tetrabromobisphenol A Detection

, , , , , & show all
Pages 2506-2523 | Received 06 Apr 2019, Accepted 07 May 2019, Published online: 14 May 2019

References

  • Abdallah, M. A. 2016. Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-A (TBBP-A) – a review. Environment International 94:235–50. doi: 10.1016/j.envint.2016.05.026.
  • Ansari, S., M. S. Ansari, S. P. Satsangee, and R. Jain. 2019. WO3 decorated graphene nanocomposite based electrochemical sensor: a prospect for the detection of anti-anginal drug. Analytica Chimica Acta 1046:99–109. doi: 10.1016/j.aca.2018.09.028.
  • Arduini, F., S. Cinti, V. Scognamiglio, D. Moscone, and G. Palleschi. 2017. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta 959:15–42. doi: 10.1016/j.aca.2016.12.035.
  • Barghi, M., E. S. Shin, S. D. Choi, R. D. Behrooz, and Y. S. Chang. 2018. HBCD and TBBPA in human scalp hair: evidence of internal exposure. Chemosphere 207:70–7. doi: 10.1016/j.chemosphere.2018.05.032.
  • Barrett, C. A., D. A. Orban, S. E. Seebeck, L. E. Lowe, and J. E. Owens. 2015. Development of a low-density-solvent dispersive liquid–liquid microextraction with gas chromatography and mass spectrometry method for the quantitation of tetrabromobisphenol-A from dust. Journal of Separation Science 38 (14):2503–9. doi: 10.1002/jssc.201500205.
  • Bunyakul, N., and A. J. Baeumner. 2015. Combining electrochemical sensors with miniaturized sample preparation for rapid detection in clinical samples. Sensors 15 (1):547–64. doi: 10.3390/s150100547.
  • Chen, H. J., Z. H. Zhang, R. Cai, X. Q. Kong, X. Chen, Y. N. Liu, and S. Z. Yao. 2013. Molecularly imprinted electrochemical sensor based on a reduced graphene modified carbon electrode for tetrabromobisphenol A detection. The Analyst 138 (9):2769–76. doi: 10.1039/c3an00146f.
  • Chen, H. J., Z. H. Zhang, R. Cai, W. Rao, and F. Long. 2014. Molecularly imprinted electrochemical sensor based on nickel nanoparticles–graphene nanocomposites modified electrode for determination of tetrabromobisphenol A. Electrochimica Acta 117:385–92. doi: 10.1016/j.electacta.2013.11.185.
  • Chen, L. X., X. Y. Wang, W. H. Lu, X. Q. Wu, and J. H. Li. 2016a. Molecular imprinting: perspectives and applications. Chemical Society Reviews 45 (8):2137–211. doi: 10.1039/C6CS00061D.
  • Chen, L. X., S. F. Xu, and J. H. Li. 2011. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews 40 (5):2922–42. doi: 10.1039/c0cs00084a.
  • Chen, X. R., L. D. Ji, Y. K. Zhou, and K. B. Wu. 2016b. Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A. Scientific Reports 6: 26044. doi: 10.1038/srep26044.
  • Cunha, S. C., C. Oliveira, and J. O. Fernandes. 2017. Development of QuEChERS-based extraction and liquid chromatography–tandem mass spectrometry method for simultaneous quantification of bisphenol A and tetrabromobisphenol A in seafood: fish, bivalves, and seaweeds. Analytical and Bioanalytical Chemistry 409 (1):151–60. doi: 10.1007/s00216-016-9980-3.
  • Guo, S. J., and E. K. Wang. 2007. Synthesis and electrochemical applications of gold nanoparticles. Analytica Chimica Acta 598 (2):181–92. doi: 10.1016/j.aca.2007.07.054.
  • Huang, J. D., X. M. Zhang, S. Liu, Q. Lin, X. R. He, X. R. Xing, and W. J. Lian. 2011. Electrochemical sensor for bisphenol A detection based on molecularly imprinted polymers and gold nanoparticles. Journal of Applied Electrochemistry 41 (11):1323–8. doi: 10.1007/s10800-011-0350-8.
  • Inthavong, C., F. Hommet, F. Bordet, V. Rigourd, T. Guerin, and S. Dragacci. 2017. Simultaneous liquid chromatography–tandem mass spectrometry analysis of brominated flame retardants (tetrabromobisphenol A and hexabromocyclododecane diastereoisomers) in French breast milk. Chemosphere 186 :762–9. doi: 10.1016/j.chemosphere.2017.08.020.
  • Jacobs, C. B., M. J. Peairs, and B. J. Venton. 2010. Review: carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta 662 (2):105–27. doi: 10.1016/j.aca.2010.01.009.
  • Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry 101 (1):19–28. doi: 10.1016/S0022-0728(79)80075-3.
  • Li, J., T. Chen, Y. W. Wang, Z. X. Shi, X. Q. Zhou, Z. W. Sun, D. J. Wang, and Y. N. Wu. 2017. Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solid-phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC. Journal of Separation Science 40 (3):709–16. doi: 10.1002/jssc.201600969.
  • Li, X. Y., X. X. Ye, C. Y. Li, and K. B. Wu. 2018a. Substitution group effects of 2-mercaptobenzothiazole on gold nanoparticles toward electrochemical oxidation and sensing of tetrabromobisphenol A. Electrochimica Acta 270:517–25. doi: 10.1016/j.electacta.2018.03.098.
  • Li, Y. F., L. N. Zou, G. Song, K. J. Li, and B. X. Ye. 2013. Electrochemical behavior of sophoridine at a new amperometric sensor based on L-Theanine modified electrode and its sensitive determination. Journal of Electroanalytical Chemistry 709:1–9. doi: 10.1016/j.jelechem.2013.09.030.
  • Li, Y., W. K. Xu, X. R. Zhao, Y. F. Huang, J. J. Kang, Q. Qi, and C. L. Zhong. 2018b. Electrochemical sensors based on molecularly imprinted polymers on Fe3O4/graphene modified by gold nanoparticles for highly selective and sensitive detection of trace ractopamine in water. The Analyst 143 (21):5094–102. doi: 10.1039/C8AN00993G.
  • Liu, D., J. N. Liu, M. Guo, H. Z. Xu, S. H. Zhang, L. L. Shi, and C. Yao. 2016a. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Marine Pollution Bulletin 112 (1–2):142–50. doi: 10.1016/j.marpolbul.2016.08.026.
  • Liu, K., J. Li, S. J. Yan, W. Zhang, Y. J. Li, and D. Han. 2016b. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere 148:8–20. doi: 10.1016/j.chemosphere.2016.01.023.
  • Liu, L. H., A. F. Liu, Q. H. Zhang, J. B. Shi, B. He, Z. J. Yun, and G. B. Jiang. 2017. Determination of tetrabromobisphenol-A/S and their main derivatives in water samples by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry. Journal of Chromatography A 1497:81–6. doi: 10.1016/j.chroma.2017.03.040.
  • Maduraiveeran, G., M. Sasidharan, and V. Ganesan. 2018. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors & Bioelectronics 103:113–29. doi: 10.1016/j.bios.2017.12.031.
  • Manikandan, V. S., B. Adhikari, and A. C. Chen. 2018. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. The Analyst 143 (19):4537–54. doi: 10.1039/C8AN00497H.
  • Pittinger, C. A., and A. M. Pecquet. 2018. Review of historical aquatic toxicity and bioconcentration data for the brominated flame retardant tetrabromobisphenol A (TBBPA): effects to fish, invertebrates, algae, and microbial communities. Environmental Science and Pollution Research 25 (15):14361–72. doi: 10.1007/s11356-018-1998-y.
  • Rasheed, P. A., and N. Sandhyarani. 2017. Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchimica Acta 184 (4):981–1000. doi: 10.1007/s00604-017-2143-1.
  • Shahrokhian, S., M. Shamloofard, and R. Salimian. 2018. Investigation of the electrochemical behavior of tizanidine on the surface of glassy carbon electrode modified with multi-walled carbon nanotube/titan yellow-doped polypyrrole. Journal of Electroanalytical Chemistry 823:146–54. doi: 10.1016/j.jelechem.2018.06.005.
  • Shen, J., T. Gan, Y. S. Jin, J. Wang, and K. B. Wu. 2018. Electrochemical sensor based on electropolymerized dopamine molecularly imprinted film for tetrabromobisphenol A. Journal of Electroanalytical Chemistry 826:10–5. doi: 10.1016/j.jelechem.2018.08.019.
  • Shi, Z. X., L. Zhang, Y. F. Zhao, Z. W. Sun, X. Q. Zhou, J. G. Li, and Y. N. Wu. 2017. A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: occurrence and exposure assessment. Science of the Total Environment 599:237–45. doi: 10.1016/j.scitotenv.2017.04.237.
  • Wang, X. M., J. Y. Liu, Q. Liu, X. Z. Du, and G. B. Jiang. 2013. Rapid determination of tetrabromobisphenol A and its main derivatives in aqueous samples by ultrasound-dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. Talanta 116:906–11. doi: 10.1016/j.talanta.2013.08.011.
  • Wang, Y. C., D. Cokeliler, and S. Gunasekaran. 2015. Reduced graphene oxide/carbon nanotube/gold nanoparticles nanocomposite functionalized screen-printed electrode for sensitive electrochemical detection of endocrine disruptor bisphenol A. Electroanalysis 27 (11):2527–36. doi: 10.1002/elan.201500120.
  • Xu, W. Z., K. Zhang, N. W. Wang, T. Liu, W. H. Huang, T. S. Liu, Y. Lu, W. M. Yang, and S. J. Li. 2018. A novel electrochemical sensor based on silver nanodendrites and molecularly imprinted polymers for the determination of tetrabromobisphenol A in water. Electroanalysis 30 (12):2950–8. doi: 10.1002/elan.201800514.
  • Zhang, Z., S. B. Dong, D. H. Ge, N. F. Zhu, K. Wang, G. B. Zhu, W. Z. Xu, and H. Xu. 2018. An ultrasensitive competitive immunosensor using silica nanoparticles as an enzyme carrier for simultaneous impedimetric detection of tetrabromobisphenol A bis(2-hydroxyethyl) ether and tetrabromobisphenol A mono(hydroxyethyl) ether. Biosensors & Bioelectronics 105 :77–80. doi: 10.1016/j.bios.2018.01.029.
  • Zhang, Z. H., R. Cai, F. Long, and J. Wang. 2015. Development and application of tetrabromobisphenol A imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode. Talanta 134:435–42. doi: 10.1016/j.talanta.2014.11.040.
  • Zhao, Q., K. Zhang, G. X. Yu, W. X. Wu, X. Y. Wei, and Q. Lu. 2016. Facile electrochemical determination of tetrabromobisphenol A based on modified glassy carbon electrode. Talanta 151:209–16. doi: 10.1016/j.talanta.2016.01.033.
  • Zhou, F., Y. Wang, W. Wu, T. Jing, S. R. Mei, and Y. K. Zhou. 2016a. Synergetic signal amplification of multi-walled carbon nanotubes–Fe3O4 hybrid and trimethyloctadecylammonium bromide as a highly sensitive detection platform for tetrabromobisphenol A. Scientific Reports 6: 38000. doi: 10.1038/srep38000.
  • Zhou, T. T., Y. Q. Feng, L. X. Zhou, Y. Tao, D. Luo, T. Jing, X. L. Shen, Y. K. Zhou, and S. R. Mei. 2016b. Selective and sensitive detection of tetrabromobisphenol-A in water samples by molecularly imprinted electrochemical sensor. Sensors and Actuators B-Chemical 236:153–62. doi: 10.1016/j.snb.2016.05.153.
  • Zhou, X., X. X. Ye, K. B. Wu, C. Y. Li, and Y. Y. Wang. 2018. Electrochemical sensing of terabromobisphenol A at a polymerized ionic liquid film electrode and the enhanced effects of anions. Ionics 24 (9):2843–50. doi: 10.1007/s11581-017-2415-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.