696
Views
12
CrossRef citations to date
0
Altmetric
Raman

Enhanced Surface-Enhanced Raman Scattering (SERS) Sensitivity by the Self-Assembly of Silver Nanoparticles (Ag NPs) Laminated on Polydimethylsiloxane (PDMS)

, , , , , , & show all
Pages 2868-2882 | Received 12 Apr 2019, Accepted 28 May 2019, Published online: 08 Jun 2019

References

  • Andres, R. P., J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin. 1996. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273(5282):1690–3. doi: 10.1126/science.273.5282.1690.
  • Betz, J. F., W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff. 2014. Simple SERS substrates: Powerful, portable, and full of potential. Physical Chemistry Chemical Physics 16(6):2224–39. doi: 10.1039/C3CP53560F.
  • Blackie, E. J., E. C. Le Ru, and P. G. Etchegoin. 2009. Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. Journal of the American Chemical Society 131(40):14466–72. doi: 10.1021/ja905319w.
  • Bradley, L., G. Larsen, and Y. P. Zhao. 2016. Designed to fail: Flexible, anisotropic silver nanorod sheets for low-cost wireless activity monitoring. The Journal of Physical Chemistry C 120(27):14969–76. doi: 10.1021/acs.jpcc.6b04792.
  • Chen, J., Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, and L. Guo. 2016. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Analytical Chemistry 88(4):2149–55. doi: 10.1021/acs.analchem.5b03735.
  • Costa, L. A. F., H. S. Breyer, and J. C. Rubim. 2010. Surface-enhanced Raman scattering (SERS) on copper electrodes in 1-n-butyl-3-methylimidazoliun tetrafluorbarate (BMI.BF4): The adsorption of benzotriazole (BTAH). Vibrational Spectroscopy 54(2):103–6. doi: 10.1016/j.vibspec.2010.03.012.
  • Darby, B. L., P. G. Etchegoin, and E. C. Le Ru. 2014. Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation. Physical Chemistry Chemical Physics 16(43):23895–23899. doi: 10.1039/C4CP03422H.
  • Deng, Y., W. S. Hong, J. F. He, Z. N. Guo, Y. Chen, and Z. G. Huang. 2018. Micro-cracks on crosslinked Poly(dimethylsiloxane) (PDMS) surface treated by nanosecond laser irradiation. Applied Surface Science 445:488–95. doi: 10.1016/j.apsusc.2018.03.181.
  • Dieringer, J. A., K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne. 2009. Surface-enhanced raman excitation spectroscopy of a single rhodamine 6G molecule. Journal of the American Chemical Society 131(2):849–54. doi: 10.1021/ja8080154.
  • Dujardin, E., L. B. Hsin, C. R. C. Wang, and S. Mann. 2001. DNA-driven self-assembly of gold nanorods. Chemical Communications (14):1264–5. 102319p. doi: 10.1039/b.
  • Finsgar, M., and I. Milosev. 2010. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corrosion Science 52(9):2737–49. doi: 10.1016/j.corsci.2010.05.002.
  • Futamata, M., Y. Maruyama, and M. Ishikawa. 2003. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. The Journal of Physical Chemistry B 107(31):7607–17. doi: 10.1021/jp022399e.
  • Grzelczak, M., J. Vermant, E. M. Furst, and L. M. Liz-Marzan. 2010. Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–605. doi: 10.1021/nn100869j.
  • Kang, H., C. J. Heo, H. C. Jeon, S. Y. Lee, and S. M. Yang. 2013. Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices. ACS Applied Materials & Interfaces 5(11):4569–74. doi: 10.1021/am400019v.
  • Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz. 2003. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B 107(3):668–77. doi: 10.1002/chin.200316243.
  • Kumar, P., R. Khosla, M. Soni, D. Deva, and S. K. Sharma. 2017. A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template. Sensors and Actuators B:Chemical 246:477–86. doi: 10.1016/j.snb.2017.01.202.
  • Li, R., H. M. Lv, X. L. Zhang, P. P. Liu, L. Chen, J. B. Cheng, and B. Zhao. 2015. Vibrational spectroscopy and density functional theory study of 4-mercaptobenzoic acid. Spectrochimica Acta A 148:369–74. doi: 10.1016/j.saa.2015.03.132.
  • Li, W. Y., P. H. C. Camargo, X. M. Lu, and Y. N. Xia. 2009. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Letters 9(1):485–90. doi: 10.1021/nl803621x.
  • Liu, S., C. Jiang, B. Yang, Z. Zhang, and M. Han. 2014. Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection. RSC Advances 4(80):42358–63. doi: 10.1039/C4RA05735J.
  • Liu, X., J. Wang, J. Wang, L. Tang, and Y. Ying. 2016. Flexible and transparent SERS-active metafilm for visualizing trace molecules via Raman spectral mapping. Analytical Chemistry 88(12):6166–73. doi: 10.1021/acs.analchem.6b00858.
  • Liyanage, T., A. Rael, S. Shaffer, S. Zaidi, J. V. Goodpaster, and R. Sardar. 2018. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. The Analyst 143(9):2012–22. doi: 10.1039/C8AN00008E.
  • Lu-Bin, Z., Y. Jun, Z. Yu-Ming, L. Qing, C. Xiao-Xia, and L. Fang-Hong. 2014. Self-assembly of Au nanoparticles on PMMA template as flexible transparent, and highly active SERS substrates. Analytical Chemistry 86(13):6262–7. doi: 10.1021/ac404224f.
  • Michota, A., and J. Bukowska. 2003. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. Journal of Raman Spectroscopy 34(1):21–5. doi: 10.1002/jrs.928.
  • Naumov, S., S. Kapoor, S. Thomas, S. Venkateswaran, and T. Mukherjee. 2004. SERS of benzotriazole on Ag colloid: Surface structure characterization using the DFT approach. Journal of Molecular Structure 685(1–3):127–31. doi: 10.1016/j.theochem.2004.06.026.
  • Novara, C., S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiado, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis. 2016. SERS-active Ag nanoparticles on porous silicon and PDMS substrates: A comparative study of uniformity and Raman efficiency. The Journal of Physical Chemistry C 120(30):16946–53. doi: 10.1021/acs.jpcc.6b03852.
  • Osinkina, L., T. Lohmuller, F. Jackel, and J. Feldmann. 2013. Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy. The Journal of Physical Chemistry C 117(43):22198–202. doi: 10.1021/jp312149d.
  • Park, S., J. Lee, and H. Ko. 2017. Transparent and flexible surface enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Applied Materials & Interfaces 9(50):44088–95. doi: 10.1021/acsami.7b14022.
  • Serhiy, M., and C. George. 2003. Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. Journal of American Chemical Society 125(10):2896–8. doi: 10.1021/ja029453p.
  • Shiohara, A., Y. S. Wang, and L. M. Liz-Marzan. 2014. Recent approaches toward creation of hot spots for SERS detection. Journal of Photochemistry and Photobiology C 21:2–25. doi: 10.1016/j.jphotochemrev.2014.09.001.
  • Suresh, V., L. Ding, A. B. Chew, and F. L. Yap. 2018. Fabrication of large area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials 1(2):886–93. doi: 10.1021/acsanm.7b00295.
  • Thomas, S., S. Venkateswaran, S. Kapoor, R. D. Cunha, and T. Mukherjee. 2004. Surface enhanced Raman scattering of benzotriazole: A molecular orientational study. Spectrochimica Acta A 60(1–2):25–9. doi: 10.1016/S1386-1425(03)00213-0.
  • Wang, F. L., R. G. Widejko, Z. Q. Yang, K. T. Nguyen, H. Y. Chen, L. P. Fernando, K. A. Christensen, and J. N. Anker. 2012. Surface-enhanced Raman scattering detection of ph with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Analytical Chemistry 84(18):8013–19. doi: 10.1021/ac3018179.
  • Wang, X. J., X. P. Zhu, Y. Q. Chen, M. J. Zheng, Q. Xiang, Z. X. Tang, G. H. Zhang, and H. G. Duan. 2017a. Sensitive surface-enhanced Raman scattering detection using on-demand post assembled particle-on-film structure. ACS Applied Materials & Interfaces 9(36):31102–10. doi: 10.1021/acsami.7b08818.
  • Wang, Y. C., Y. H. Jin, X. Y. Xiao, T. F. Zhang, H. T. Yang, Y. D. Zhao, J. P. Wang, K. L. Jiang, S. S. Fan, and Q. Q. Li. 2018. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 10(32):15195–204. doi: 10.1039/C8NR01628C.
  • Wang, Z. Y., S. F. Zong, L. Wu, D. Zhu, and Y. P. Cui. 2017b. SERS-activated platforms for immunoassay: Probes, encoding methods, and applications. Chemical Reviews 117(12):7910–63. doi: 10.1021/acs.chemrev.7b00027.
  • Xu, H., J. Aizpurua, M. Kall, and P. Apell. 2000. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E 62(3):4318. doi: 10.1103/PhysRevE.62.4318.
  • Xu, K., Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong. 2017a. Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Applied Materials & Interfaces 9(31):26341–9. doi: 10.1021/acsami.7b06669.
  • Xu, M. L., Y. Gao, X. X. Han, and B. Zhao. 2017b. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review. Journal of Agricultural and Food Chemistry 65(32):6719–26. doi: 10.1021/acs.jafc.7b02504.
  • Yan, B., K. X. Sun, K. L. Chao, N. Alharbi, J. X. Li, and Q. Huang. 2018. Fabrication of a novel transparent SERS substrate comprised of ag-nanoparticle arrays and its application in rapid detection of ractopamine on meat. Food Analytical Methods 11(8):2329–35. doi: 10.1007/s12161-018-1216-z.
  • Yao, H. L., Y. X. Yuan, and R. A. Gu. 2004. Negative role of triphenylphosphine in the inhibition of benzotriazole at the Cu surface studied by surface-enhanced Raman spectroscopy. Journal of. Electroanalytical Chemistry 573(2):255–61. doi: 10.1016/j.jelechem.2004.07.010.
  • Zhang, X. G., S. Y. Si, X. L. Zhang, W. Wu, X. H. Xiao, and C. Z. Jiang. 2017. Improved thermal stability of graphene-veiled noble metal nanoarrays as recyclable SERS substrates. ACS Applied Materials & Interfaces 9(46):40726–33. doi: 10.1021/acsami.7b13708.
  • Zhao, H., W. Hasi, L. Bao, Y. Liu, S. Han, and D. Lin. 2018. A silver self-assembled monolayer-decorated polydimethylsiloxane flexible substrate for in situ SERS detection of low-abundance molecules. Journal of Raman Spectroscopy 49(9):1469–77. doi: 10.1002/jrs.5418.
  • Zhong, L. B., Q. Liu, P. Wu, Q. F. Niu, H. Zhang, and Y. M. Zheng. 2018. Facile on-site aqueous pollutant monitoring using a flexible, ultra-light and robust SERS substrate: Interface self-assembly of Au@Ag nanocubes on polyvinyl chloride template. Environmental Science & Technology 52(10):5812–20. doi: 10.1021/acs.est.7b04327.
  • Zhou, N., G. Meng, Z. Huang, Y. Ke, Q. Zhou, and X. Hu. 2016. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. The Analyst 141(20):5864–9. doi: 10.1039/C6AN00807K.
  • Zhou, Q., Z. Gui, Y. Chao, L. Yan, W. Ying, and J. Zheng. 2007. Charge-transfer induced surface-enhanced Raman scattering in silver nanoparticle assemblies. The Journal of Physical Chemistry C 111(5):1951–4. doi: 10.1021/jp067045s.
  • Zhou, Q., X. W. Li, Q. Fan, X. X. Zhang, and J. W. Zheng. 2006. Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angewandte Chemie International Edition 45(24):3970–3. doi: 10.1002/anie.200504419.
  • Zhu, J., G. Z. Lin, M. Z. Wu, Z. J. Chen, P. M. Lu, and W. G. Wu. 2018. Large-scale fabrication of ultrasensitive and uniform surface-enhanced Raman scattering substrates for the trace detection of pesticides. Nano Materials 8(7):520. doi: 10.3390/nano8070520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.