224
Views
7
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical amplification for Hg(II) quantification by anchoring an enzymatically extended aptamer

, , , , , , , & show all
Pages 2883-2895 | Received 25 Feb 2019, Accepted 29 May 2019, Published online: 12 Jun 2019

References

  • Abnous, K., N. M. Danesh, M. Ramezani, M. Alibolandi, and S. M. Taghdisi. 2018. A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier. Biosensors and Bioelectronics 119:204–8. doi:10.1016/j.bios.2018.08.024.
  • Arya, S. K., and P. Estrela. 2018. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors 18(45). doi:10.3390/s18072010.
  • Bansod, B.,. T. Kumar, R. Thakur, S. Rana, and I. Singh. 2017. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics 94:443–55. doi:10.1016/j.bios.2017.03.031.
  • Cao, Y., S. Zhu, J. Yu, X. Zhu, Y. Yin, and G. Li. 2012. Protein detection based on small molecule-linked DNA. Analytical Chemistry 84(10):4314–20. doi:10.1021/ac203401h.
  • Chen, P., and C. He. 2004. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. Journal of the American Chemical Society 126(3):728–9. doi:10.1021/ja0383975.
  • Farooq, U., Q. L. Yang, M. W. Ullah, and S. Q. Wang. 2018. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Biosensors and Bioelectronics 118:204–16. doi:10.1016/j.bios.2018.07.058.
  • Feng, L. H., Y. Deng, X. J. Wang, and M. G. Liu. 2017. Polymer fluorescent probe for Hg(II) with thiophene, benzothiazole and quinoline groups. Sensors and Actuators B-Chemical 245:441–7. doi:10.1016/j.snb.2017.01.184.
  • Gao, F., T. S. Zhang, Y. Chu, Q. X. Wang, J. Song, W. W. Qiu, and Z. Y. Lin. 2018. Ultrasensitive impedimetric mercury(II) sensor based on thymine-Hg(II)-thymine interaction and subsequent disintegration of multiple sandwich-structured DNA chains. Microchimica Acta 185(12):555. doi:10.1007/s00604-018-3097-7.
  • He, L. L., L. Cheng, Y. Lin, H. F. Cui, N. Hong, H. Peng, D. R. Kong, C. D. Chen, J. Zhang, G. B. Wei, and H. Fan. 2018. A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure. Journal of Electroanalytical Chemistry 814:161–7. doi:10.1016/j.jelechem.2018.02.050.
  • Huang, X. J., Y. L. Hao, H. Y. Wu, Q. Q. Guo, L. Q. Guo, J. Wang, L. S. Zhong, T. R. Lin, F. F. Fu, and G. N. Chen. 2014. Magnetic beads based colorimetric detection of mercuric ion. Sensors and Actuators B-Chemical 191:600–4. doi:10.1016/j.snb.2013.10.025.
  • Lee, J.-S., M. S. Han, and C. A. Mirkin. 2007. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition 46(22):4093–6. doi:10.1002/ange.200700269.
  • Lee, J. E., H. W. Shim, O. S. Kwon, Y. I. Huh, and H. Yoon. 2014. Real-time detection of metal ions using conjugated polymer composite papers. The Analyst 139(18):4466–75. doi:10.1039/C4AN00804A.
  • Li, L. Y., Y. L. Wen, L. Xu, Q. Xu, S. P. Song, X. L. Zuo, J. Yan, W. J. Zhang, and G. Liu. 2016. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes. Biosensors and Bioelectronics 75:433–45. doi:10.1016/j.bios.2015.09.003.
  • Nolan, E. M., and S. J. Lippard. 2008. Tools and tactics for the optical detection of mercuric ion. Chemical Reviews 108(9):3443–80. doi:10.1021/cr068000q.
  • Ono, A., and H. Togashi. 2004. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angewandte Chemie International Edition 43(33):4300–2. doi:10.1002/anie.200454172.
  • Sun, X. X., R. X. Liu, Q. W. Liu, Q. Fei, G. D. Feng, H. Y. Shan, and Y. F. Huan. 2018. Colorimetric sensing of mercury (II) ion based on anti-aggregation of gold nanoparticles in the presence of hexadecyl trimethyl ammonium bromide. Sensors and Actuators B-Chemical 260:998–1003. doi:10.1016/j.snb.2018.01.083.
  • Tauraitė, D., J. Jakubovska, J. Dabužinskaitė, M. Bratchikov, and R. Meškys. 2017. Modified nucleotides as substrates of terminal deoxynucleotidyl transferase. Molecules 22(4):672. doi:10.3390/molecules22040672.
  • Tortolini, C., P. Bollella, M. L. Antonelli, R. Antiochia, F. Mazzei, and G. Favero. 2015. DNA-based biosensors for Hg2+ determination by polythymine-methylene blue modified electrodes. Biosensors and Bioelectronics 67:524–31. doi:10.1016/j.bios.2014.09.031.
  • Tran, V. T., W. J. Yoon, J. H. Lee, and H. Ju. 2018. DNA sequence-induced modulation of bimetallic surface plasmons in optical fibers for sub-ppq (parts-per-quadrillion) detection of mercury ions in water. Journal of Materials Chemistry A 6(46):23894–902. doi:10.1039/C8TA08300B.
  • Wang, D. M., Q. Q. Gai, R. F. Huang, and X. W. Zheng. 2017. Label-free electrochemiluminescence assay for aqueous Hg2+ through oligonucleotide mediated assembly of gold nanoparticles. Biosensors and Bioelectronics 98:134–9. doi:10.1016/j.bios.2017.06.054.
  • Wang, W.,. F. Peng, W. Li, Y. Huang, Z. Nie, and S. Yao. 2015. A dual enzymatic amplified strategy for the detection of endonuclease V activity. Analytical Methods 7(19):8453–8. doi:10.1039/C5AY01776A.
  • Xiong, S., Deng, Y. C. Y. Y. Zhou, D. X. Gong, Y. Z. Xu, L. H. Yang, H. H. Chen, L. Chen, T. W. Song, A. Luo, X. L., et al. 2018. Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: a review. Analytical Methods 10(46):5468–79. doi:10.1039/C8AY01851K.
  • Xu, J., H. L. Li, Y. C. Chen, B. Yang, Q. C. Jiao, Y. S. Yang, and H. L. Zhu. 2018. A novel fluorescent probe for Hg2+ detection in a wide pH range and its application in living cell imaging. Analytical Methods 10(46):5554–8. [Mismatch] doi:10.1039/c8ay01887a.
  • Xu, W., H. Yi, Y. Yuan, P. Jing, Y. Chai, R. Yuan, and G. S. Wilson. 2015. An electrochemical aptasensor for thrombin using synergetic catalysis of enzyme and porous Au@Pd core–shell nanostructures for signal amplification. Biosensors and Bioelectronics 64:423–8. doi:10.1016/j.bios.2014.08.091.
  • Yang, X. F., X. J. Qin, Y. X. Li, M. Yan, Y. Cui, and G. X. Sun. 2018. TBET-based ratiometric fluorescent probe for Hg2+ with large pseudo Stokes shift and emission shift in aqueous media and intracellular colorimetric imaging in live Hela cells. Biosensors and Bioelectronics 121:62–71. doi:10.1016/j.bios.2018.09.004.
  • Yun, W., F. K. Li, X. Y. Liu, N. Li, L. Chen, and L. Z. Yang. 2018. A catalytic cleavage strategy for fluorometric determination of Hg(II) based on the use of a Mg(II)-dependent split DNAzyme and hairpins conjugated to gold nanoparticles. Microchimica Acta 185(7):457 . doi:10.1007/s00604-018-2990-4.
  • Zaib, M., M. M. Athar, A. Saeed, and U. Farooq. 2015. Electrochemical determination of inorganic mercury and arsenic – A review. Biosensors and Bioelectronics 74:895–908. doi:10.1016/j.bios.2015.07.058.
  • Zhang, J., S. Song, L. Wang, D. Pan, and C. Fan. 2007. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nature Protocols 2(11):2888. doi:10.1038/nprot.2007.419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.