4,786
Views
10
CrossRef citations to date
0
Altmetric
Gas Chromatography

Investigating the performance characteristics of the barrier discharge ionization detector and comparison to the flame ionization detector for the gas chromatographic analysis of volatile and semivolatile organic compounds

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2822-2839 | Received 26 Feb 2019, Accepted 03 Jun 2019, Published online: 03 Jul 2019

References

  • Brandt, S., A. Schütz, F. D. Klute, J. Kratzer, and J. Franzke. 2016. Dielectric barrier discharges applied for optical spectrometry. Spectrochimica Acta Part B 123:6–32. doi: 10.1016/j.sab.2016.07.001.
  • Franchina, F. A., M. Maimone, D. Sciarrone, G. Purcaro, P. Q. Tranchida, and L. Mondello. 2015. Evaluation of a novel helium ionization detector within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography. Journal of Chromatography A 1402:102–9. doi: 10.1016/j.chroma.2015.05.013.
  • Gras, R., J. Luong, M. Monagle, and B. Winniford. 2006. Gas chromatographic applications with the dielectric barrier discharge detector. Journal of Chromatographic Science 44(2):101–7. doi: 10.1093/chromsci/44.2.101.
  • Guo, C., F. Tang, J. Chen, X. Wang, S. Zhang, and X. Zhang. 2015. Development of dielectric-barrier-discharge ionization. Analytical and Bioanalytical Chemistry 407(9):2345–64. doi: 10.1007/s00216-014-8281-y.
  • Hagenhoff, S., and H. Hayen. 2018. LC/MS analysis of vitamin D metabolites by dielectric barrier discharge ionization and a comparison with electrospray ionization and atmospheric pressure chemical ionization. Analytical and Bioanalytical Chemistry 410(20):4905–11. doi: 10.1007/s00216-018-1137-0.
  • Han, B., X. Jiang, X. Hou, and C. Zheng. 2014. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds. Analytical Chemistry 86(1):936–42. doi: 10.1021/ac403662w.
  • Hu, J., W. Li, C. Zheng, and X. Hou. 2011. Dielectric barrier discharge in analytical spectrometry. Applied Spectroscopy 46(5):368–87. doi: 10.1080/05704928.2011.561511.
  • Huba, A. K., M. F. Mirabelli, and R. Zenobi. 2018. High-throughput screening of PAHs and polar trace contaminants in water matrices by direct solid-phase microextraction coupled to a dielectric barrier discharge ionization source. Analytica Chimica Acta 1030:125–32. doi: 10.1016/j.aca.2018.05.050.
  • Iguchi, S., K. Teramura, S. Hosokawa, and T. Tanaka. 2015. Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO2 in an aqueous solution over Ni–Al layered double hydroxides. Physical Chemistry Chemical Physics 17(27):17995–8003. doi: 10.1039/C5CP02724A.
  • Jiang, X., C. Li, Z. Long, and X. Hou. 2015. Selectively enhanced molecular emission spectra of benzene, toluene and xylene with nano-MnO2 in atmospheric ambient temperature dielectric barrier discharge. Analytical Methods 7(2):400–4. doi: 10.1039/C4AY02194K.
  • Jiang, X., Y. Chen, C. Zheng, and X. Hou. 2014. Electrothermal vaporization for universal liquid sample introduction to dielectric barrier discharge microplasma for portable atomic emission spectrometry. Analytical Chemistry 86(11):5220–4. doi: 10.1021/ac500637p.
  • Jo, S.-H., and K.-H. Kim. 2017. The applicability of a large-volume injection (LVI) system for quantitative analysis of permanent gases O2 and N2 using a gas chromatograph/barrier discharge ionization detector. Environmental Monitoring and Assessment 189(7):317.
  • Kirk, A. T., T. Last, and S. Zimmermann. 2017. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge. Journal of Chromatography A 1483:120–6. doi: 10.1016/j.chroma.2016.12.071.
  • Kogelschatz, U. 2003. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing 23(1):1–46.
  • Kratzer, J., S. Musil, K. Marschner, M. Svoboda, T. Matoušek, Z. Mester, R. E. Sturgeon, and J. Dědina. 2018. Behavior of selenium hydride in heated quartz tube and dielectric barrier discharge atomizers. Analytica Chimica Acta 1028:11–21. doi: 10.1016/j.aca.2018.05.053.
  • Li, C., X. Jiang, and X. Hou. 2015. Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines. Microchemical Journal 119:108–13. doi: 10.1016/j.microc.2014.11.005.
  • Li, W., C. Zheng, G. Fan, L. Tang, K. Xu, Y. Lv, and X. Hou. 2011. Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons. Analytical Chemistry 83(13):5050–5. doi: 10.1021/ac2007224.
  • Liu, Z., Z. Zhu, Q. Wu, S. Hu, and H. Zheng. 2011. Dielectric barrier discharge-plasma induced vaporization and its application to the determination of mercury by atomic fluorescence spectrometry. The Analyst 136(21):4539–44. doi: 10.1039/c1an15332c.
  • Martin, A. J. P., and R. L. M. Synge. 1941. A new form of chromatogram employing two liquid phases. Biochemical Journal 35(12):1358–68. doi: 10.1042/bj0351358.
  • Pascale, R., M. Caivano, A. Buchicchio, I. M. Mancini, G. Bianco, and D. Caniani. 2017. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system. Journal of Chromatography A 1480:62–9. doi: 10.1016/j.chroma.2016.11.024.
  • Rosenberg, E. 2006. Trace organic analysis by gas chromatography with selective detectors. In Encyclopedia of analytical chemistry, eds. R. A. Meyers and M. P. Miller. Hoboken, NJ: Wiley.
  • Scanlon, J. T., and D. E. Willis. 1985. Calculation of flame ionization detector relative response factors using the effective carbon number concept. Journal of Chromatographic Science 23(8):333–40. doi: 10.1093/chromsci/23.8.333.
  • Schütz, A., S. Brandt, S. Liedtke, D. Foest, U. Marggraf, and J. Franzke. 2015. Dielectric barrier discharge ionization of perfluorinated compounds. Analytical Chemistry 87(22):11415–9. doi: 10.1021/acs.analchem.5b03538.
  • Shinada, K., S. Horiike, S. Uchiyama, R. Takechi, and T. Nishimoto. 2012. Development of new ionization detector for gas chromatography by applying dielectric barrier discharge. Shimadzu Review SR13_001E:1–5.
  • Siemens, W. 1857. Ueber die elektrostatische Induktion und die Verzögerung des Stroms in Flaschendrähten. Annalen der Physik und Chemie 178(9):66–122. doi: 10.1002/andp.18571780905.
  • Straka, M., S. Burhenn, K. Marschner, S. Brandt, U. Marggraf, J. Dědina, J. Franzke, and J. Kratzer. 2018. Novel designs of dielectric barrier discharge hydride atomizers for atomic spectrometry. Spectrochimica Acta Part B 146:69–76. doi: 10.1016/j.sab.2018.05.006.
  • Ueta, I., Y. Nakamura, K. Fujimura, S. Kawakubo, and Y. Saito. 2017. Determination of gaseous formic and acetic acids by a needle-type extraction device coupled to a gas chromatography-barrier discharge ionization detector. Chromatographia 80(1):151–6. doi: 10.1007/s10337-016-3201-2.
  • Ueta, I., Y. Nakamura, S. Kawakubo, and Y. Saito. 2018. Determination of aqueous formic and acetic acids by purge-and-trap analysis with a needle-type extraction device and gas chromatography barrier discharge ionization detector. Analytical Sciences 34(2):201–5. doi: 10.2116/analsci.34.201.
  • Weatherly, C. A., R. M. Woods, and D. W. Armstrong. 2014. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection. Journal of Agricultural and Food Chemistry 62(8):1832–8. doi: 10.1021/jf4050167.
  • Zhu, H., M. Zhou, J. Lee, R. Nidetz, K. Kurabayashi, and X. Fan. 2016. Low-power miniaturized helium dielectric barrier discharge photoionization detectors for highly sensitive vapor detection. Analytical Chemistry 88(17):8780–6. doi: 10.1021/acs.analchem.6b02180.