187
Views
5
CrossRef citations to date
0
Altmetric
Process Analytical

Oligonucleotide Functionalized Microporous Gold Electrode for the Selective and Sensitive Determination of Mercury by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV)

, , , , , , & show all
Pages 2938-2950 | Received 15 May 2019, Accepted 11 Jun 2019, Published online: 25 Jun 2019

References

  • Akbari Hasanjani, H. R., and K. Zarei. 2019. An electrochemical sensor for attomolar determination of mercury(II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosensors and Bioelectronics 128:1–8. doi:10.1016/j.bios.2018.12.039.
  • Bala, A., and Ł. Górski. 2018. Peptide nucleic acid as a selective recognition element for electrochemical determination of Hg2+. Bioelectrochemistry (Amsterdam, Netherlands) 119:189–95. doi:10.1016/j.bioelechem.2017.09.008.
  • Bard, A. J., L. R. Faulkner, J. Leddy, and C. G. Zoski. 1980. Electrochemical methods: Fundamentals and applications, vol. 2. New York: Wiley.
  • Beauvais-Flück, R., A. Chaumot, F. Gimbert, H. Quéau, O. Geffard, V. I. Slaveykova, and C. Cosio. 2016. Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain. Journal of Hazardous Materials 320:401–7. doi:10.1016/j.jhazmat.2016.08.055.
  • Bernalte, E., C. M. Sánchez, and E. P. Gil. 2011. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Analytica Chimica Acta 689(1):60–4. doi:10.1016/j.aca.2011.01.042.
  • Bunka, D. H. J., and P. G. Stockley. 2006. Aptamers come of age - at last. Nature Reviews. Microbiology 4(8):588doi:10.1038/nrmicro1458.
  • Cao, R.-G., B. Zhu, J. Li, and D. Xu. 2009. Oligonucleotides-based biosensors with high sensitivity and selectivity for mercury using electrochemical impedance spectroscopy. Electrochemistry Communications 11(9):1815–8. doi:10.1016/j.elecom.2009.07.029.
  • Chen, Z., Z. Ali, S. Li, B. Liu, and N. He. 2016. Aptamers generated from cell-systematic evolution of ligands through exponential enrichment and their applications. Journal of Nanoscience and Nanotechnology 16(9):9346–58. doi:10.1166/jnn.2016.12641.
  • Cherevko, S., and C.-H. Chung. 2011. Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochemistry Communications 13(1):16–9. doi:10.1016/j.elecom.2010.11.001.
  • Gebala, M., L. Stoica, S. Neugebauer, and W. Schuhmann. 2009. Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis 21(3–5):325–31. doi:10.1002/elan.200804388.
  • Ghaedi, M., M. Reza Fathi, A. Shokrollahi, and F. Shajarat. 2006. Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Analytical Letters 39(6):1171–85. doi:10.1080/00032710600622167.
  • Janegitz, B. C., L. C. S. Figueiredo-Filho, L. H. Marcolino-Junior, S. P. N. Souza, E. R. Pereira-Filho, and O. Fatibello-Filho. 2011. Development of a carbon nanotubes paste electrode modified with crosslinked chitosan for cadmium(II) and mercury(II) determination. Journal of Electroanalytical Chemistry 660(1):209–16. doi:10.1016/j.jelechem.2011.07.001.
  • Jarup, L. 2003. Hazards of heavy metal contamination. Br Med Bull 68 :167–82.
  • Kumar, A., J. M. Gonçalves, A. Sukeri, K. Araki, and M. Bertotti. 2018. Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sensors and Actuators B: Chemical 263:237–47. doi:10.1016/j.snb.2018.02.125.
  • Määttänen, A., U. Vanamo, P. Ihalainen, P. Pulkkinen, H. Tenhu, J. Bobacka, and J. Peltonen. 2013. A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sensors and Actuators B: Chemical 177:153–62. doi:10.1016/j.snb.2012.10.113.
  • Maza, E., H. Fernández, M. A. Zon, and M. B. Moressi. 2017. Electrochemical determination of fisetin using gold electrodes modified with thiol self-assembled monolayers. Journal of Electroanalytical Chemistry 790:1–10. doi:10.1016/j.jelechem.2017.02.030.
  • Miyake, Y., Togashi, H. M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T., et al. 2006. MercuryII-Mediated Formation of Thymine − HgII − Thymine Base Pairs in DNA Duplexes. Journal of the American Chemical Society 128(7):2172–3. doi:10.1021/ja056354d.
  • Mpanza, T., M. I. Sabela, S. S. Mathenjwa, S. Kanchi, and K. Bisetty. 2014. Electrochemical determination of capsaicin and silymarin using a glassy carbon electrode modified by gold nanoparticle decorated multiwalled carbon nanotubes. Analytical Letters 47(17):2813–28. doi:10.1080/00032719.2014.924010.
  • Plowman, B. J., L. A. Jones, and S. K. Bhargava. 2015. Building with bubbles: The formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chemical Communications 51(21):4331–46. doi:10.1039/C4CC06638C.
  • Plowman, B. J., A. P. O'Mullane, P. R. Selvakannan, and S. K. Bhargava. 2010. Honeycomb nanogold networks with highly active sites. Chemical Communications 46(48):9182–4. doi:10.1039/c0cc03696j.
  • Sanzó, G., I. Taurino, R. Antiochia, L. Gorton, G. Favero, F. Mazzei, G. De Micheli, and S. Carrara. 2016. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry 112:125–31. doi:10.1016/j.bioelechem.2016.02.012.
  • Stefan-van Staden, R.-I., J. Frederick van Staden, L. Alexandra Gugoasa, and L.-R. Popescu-Mandoc. 2019. Determination of Cadmium(ii), Copper(ii), Mercury(ii), and Lead(ii) in Water Using Stochastic Sensors Based on Graphite and Diamond Paste Modified with 1H-Pyrrole-1-Hexanoic Acid. Analytical Letters 52(5):803–12. doi:10.1080/00032719.2018.1496444.
  • Sukeri, A., and M. Bertotti. 2017. Electrodeposited honeycomb-like dendritic porous gold surface: An efficient platform for enzyme-free hydrogen peroxide sensor at low overpotential. Journal of Electroanalytical Chemistry 805:18–23. doi:10.1016/j.jelechem.2017.10.004.
  • Sukeri, A., L. P. Hernandez Saravia, and M. Bertotti. 2015. A facile electrochemical approach to fabricate a nanoporous gold film electrode and its electrocatalytic activity towards dissolved oxygen reduction. Physical Chemistry Chemical Physics 17(43):28510–4. doi:10.1039/C5CP05220C.
  • Tchounwou, P. B., W. K. Ayensu, N. Ninashvili, and D. Sutton. 2003. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology 18(3):149–75. doi:10.1002/tox.10116.
  • Teoman, İ., S. Karakaya, and Y. Dilgin. 2019. Sensitive and rapid flow injection amperometric hydrazine sensor using an electrodeposited gold nanoparticle graphite pencil electrode. Analytical Letters 52(13):2041–56. doi:10.1080/00032719.2019.1591429.
  • Wang, M., W. Yuan, X. Yu, and G. Shi. 2014. Picomolar detection of mercury (II) using a three-dimensional porous graphene/polypyrrole composite electrode. Analytical and Bioanalytical Chemistry 406(27):6953–6. doi:10.1007/s00216-014-7871-z.
  • Wang, N., M. Lin, H. Dai, and H. Ma. 2016. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosensors and Bioelectronics 79:320–6. doi:10.1016/j.bios.2015.12.056.
  • Wohlmann, W., V. M. Neves, G. M. Heidrich, J. S. Silva, A. B. da Costa, J. N. G. Paniz, and V. L. Dressler. 2018. Development of an electrothermal vaporizer for direct mercury determination in soil by inductively-coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 149:222–8. doi:10.1016/j.sab.2018.08.009.
  • World-Health-Organization. 2008. Guidelines for drinking-water quality incorporation. First and second addenda. Geneva: World Health Organization.
  • Wu, J., L. Li, B. Shen, G. Cheng, P. He, and Y. Fang. 2010. Polythymine oligonucleotide-modified gold electrode for voltammetric determination of mercury(II) in aqueous solution. Electroanalysis 22(4):479–82. doi:10.1002/elan.200900441.
  • Yiwei, X., Z. Wen, H. Xiaowei, S. Jiyong, Z. Xiaobo, L. Yanxiao, C. Xueping, H. E. Tahir, and L. Zhihua. 2018. A self-assembled L-cysteine and electrodeposited gold nanoparticles-reduced graphene oxide modified electrode for adsorptive stripping determination of copper. Electroanalysis 30(1):194–203. doi:10.1002/elan.201700637.
  • Zhang, X., C. Huang, Y. Jiang, Y. Jiang, J. Shen, and E. Han. 2018. Structure-switching electrochemical aptasensor for single-step and specific detection of trace mercury in dairy products. Journal of Agricultural and Food Chemistry 66(38):10106–12. doi:10.1021/acs.jafc.8b03259.
  • Zhao, Z.-Q., X. Chen, Q. Yang, J.-H. Liu, and X.-J. Huang. 2012. Selective adsorption toward toxic metal ions results in selective response: Electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite. Chemical Communications 48(16):2180–2. doi:10.1039/C1CC16735A.
  • Zheng, H., J. Hong, X. Luo, S. Li, M. Wang, B. Yang, and M. Wang. 2019. Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples. Microchemical Journal 145:806–12. doi:10.1016/j.microc.2018.11.057.
  • Zhou, H., X. Wang, P. Yu, X. Chen, and L. Mao. 2012. Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine. The Analyst 137(2):305–8. doi:10.1039/C1AN15793K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.