107
Views
0
CrossRef citations to date
0
Altmetric
Immunoassay

Structural and property changes of silk fibroin determined by an immunoassay during an artificial aging process

, , , , , , & show all
Pages 385-398 | Received 26 Jun 2019, Accepted 03 Aug 2019, Published online: 14 Aug 2019

References

  • Arslanoglu, J., S. Zaleski, and J. Loike. 2011. An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Analytical and Bioanalytical Chemistry 399 (9):2997–3010. doi: 10.1007/s00216-010-4378-0.
  • Boye, J. I., A. Achouri, N. Raymond, C. Cleroux, D. Weber, T. B. Koerner, P. Hucl, and C. A. Patterson. 2013. Analysis of glabrous canary seeds by ELISA, mass spectrometry, and Western blotting for the absence of cross-reactivity with major plant food allergens. Journal of Agricultural and Food Chemistry 61 (25):6102–6112. doi: 10.1021/jf305500t.
  • Bramanti, E., D. Catalano, C. Forte, M. Giovanneschi, M. Masetti, and C. A. Veracini. 2005. Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 62 (1):105–111. doi: 10.1016/j.saa.2004.12.008.
  • Garside, P., and P. Wyeth. 2007. Crystallinity and degradation of silk: Correlations between analytical signatures and physical condition on ageing. Applied Physics A 89 (4):871–876. doi: 10.1007/s00339-007-4218-z.
  • Glausiusz, J. 2009. The Internet of the ancient world. Nature 21 (24):2677–2680. doi: 10.1038/462574a.
  • Hayashi, C. Y., and R. V. Lewis. 2000. Molecular architecture and evolution of a modular spider silk protein gene. Science 287 (5457):1477–1479. doi: 10.1126/science.287.5457.1477.
  • Heo, S., Y. S. Yun, S. Y. Cho, and H. J. Jin. 2012. Flexible bio-composites based on silks and celluloses. Journal of Nanoscience and Nanotechnology 12 (1):811–814. doi: 10.1166/jnn.2012.5369.
  • Heussner, A. H., I. Winter, S. Altaner, L. Kamp, F. Rubio, and D. R. Dietrich. 2014. Comparison of two ELISA-based methods for the detection of microcystins in blood serum. Chemico-Biological Interactions 223:10–17. doi: 10.1016/j.cbi.2014.08.014.
  • Jiang, L., J. Wang, Y. Li, Z. Wang, J. Liang, R. Wang, Y. Chen, W. Ma, B. Qi, and M. Zhang. 2014. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International 62:595–601. doi: 10.1016/j.foodres.2014.04.022.
  • Koperska, M. A., D. Pawcenis, J. Bagniuk, M. M. Zaitz, M. Missori, T. Łojewski, and J. Łojewska. 2014. Degradation markers of fibroin in silk through infrared spectroscopy. Polymer Degradation and Stability 105:185–196. doi: 10.1016/j.polymdegradstab.2014.04.008.
  • Liu, M., Y. Li, H. Zheng, Y. Zhou, B. Wang, and Z. Hu. 2015a. Development of a gold-based immunochromatographic strip assay for the detection of ancient silk. Analytical Methods 7 (18):7824–7830. doi: 10.1039/C5AY01591J.
  • Liu, M. M., J. Xie, H. L. Zheng, Y. Zhou, B. Wang, and Z. W. Hu. 2015b. Identification of ancient silk using an enzyme-linked immunosorbent assay and immuno-fluorescence microscopy. Analytical Sciences 31 (12):1317–1323. doi: 10.2116/analsci.31.1317.
  • Liu, Y., Y. Li, R. Chang, H. Zheng, Y. Zhou, M. Li, Z. Hu, and B. Wang. 2016a. Species identification of ancient leather objects by the use of the enzyme-linked immunosorbent assay. Analytical Methods 8 (42):7689–7695. doi: 10.1039/C6AY01816E.
  • Liu, Y., Y. Li, R. X. Chang, H. L. Zheng, M. L. Li, Z. W. Hu, Y. Zhou, and B. Wang. 2016b. Identification of proteinaceous binders in ancient Tripitaka by the use of an enzyme-linked immunosorbent assay. Analytical Sciences 32 (7):735–740. doi: 10.2116/analsci.32.735.
  • Malainey, M. E. 2011. Blood and protein residue analysis. New York: Springer.
  • Murphy, A. R., P. S. John, and D. L. Kaplan. 2008. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29 (19):2829–2838. doi: 10.1016/j.biomaterials.2008.03.039.
  • Nova, A., S. Keten, N. Pugno, A. Redaelli, and M. J. Buehler. 2010. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Letters 10 (7):2626–2634. doi: 10.1021/nl101341w.
  • Sehnal, F., and M. Zurovec. 2004. Construction of silk fiber core in lepidoptera. Biomacromolecules 5 (3):666–674. doi: 10.1021/bm0344046.
  • Shao, J., J. Zheng, J. Liu, and C. M. Carr. 2005. Fourier transform Raman and Fourier transform infrared spectroscopy studies of silk fibroin. Journal of Applied Polymer Science 96 (6):1999–2004. doi: 10.1002/app.21346.
  • Shevkani, K., N. Singh, A. Kaur, and J. C. Rana. 2015. Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids 43:679–689. doi: 10.1016/j.foodhyd.2014.07.024.
  • Shi, W., J. He, H. Jiang, X. Hou, A. J. Yang, and J. Shen. 2006. Determination of multiresidue of avermectins in bovine liver by an indirect competitive ELISA. Journal of Agricultural and Food Chemistry 54 (17):6143–6146. doi: 10.1021/jf060878v.
  • Taddei, P., P. Monti, G. Freddi, T. Arai, and M. Tsukada. 2003. IR study on the binding mode of metal cations to chemically modified Bombyx mori and Tussah silk fibres. Journal of Molecular Structure 651 (s651–653):433–441. doi: 10.1016/S0022-2860(02)00663-4.
  • Teramoto, H., and M. Miyazawa. 2005. Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromolecules 6 (4):2049. doi: 10.1021/bm0500547.
  • Teshome, A., S. K. Raina, and F. Vollrath. 2014. Structure and properties of silk from the African wild silkmoth gonometa postica reared indoors. Journal of Insect Science 14 (1):36. doi: 10.1673/031.014.36.
  • Teshome, A., F. Vollrath, S. K. Raina, J. M. Kabaru, and J. Onyari. 2012. Study on the microstructure of African wild silk cocoon shells and fibers. International Journal of Biological Macromolecules 50 (1):63–68. doi: 10.1016/j.ijbiomac.2011.09.025.
  • Wang, B., J. Gu, B. Chen, C. Xu, H. Zheng, Z. Peng, Y. Zhou, and Z. Hu. 2018a. Development of an enzyme-linked immunosorbent assay and gold-labelled immunochromatographic strip assay for the detection of ancient wool. Journal of Analytical Methods in Chemistry 2018:1. doi: 10.1155/2018/2641624.
  • Wang, B., J. Gu, Q. You, B. Chen, H. Zheng, Y. Zhou, and Z. Hu. 2018b. Preparation of artificial antibodies and development of an antibody-based indirect ELISA for the detection of ancient wool. Analytical Methods 10 (12):1480–1487. doi: 10.1039/C8AY00015H.
  • Wang, H.-Y., and Y.-Q. Zhang. 2013. Effect of regeneration of liquid silk fibroin on its structure and characterization. Soft Matter 9 (1):138–145. doi: 10.1039/C2SM26945G.
  • You, Q., Q. Li, H. Zheng, Z. Hu, Y. Zhou, and B. Wang. 2017. Discerning silk produced by bombyx mori from those produced by wild species using an enzyme-linked immunosorbent assay combined with conventional methods. Journal of Agricultural and Food Chemistry 65 (35):7805–7812. doi: 10.1021/acs.jafc.7b02789.
  • You, Q., M. Liu, Y. Liu, H. Zheng, Z. Hu, Y. Zhou, and B. Wang. 2017. Lanthanide-labeled immunochromatographic strip assay for the on-site identification of ancient silk. ACS Sensors 2 (4):569–575. doi: 10.1021/acssensors.7b00086.
  • Zhang, X., I. V. Berghe, and P. Wyeth. 2011. Heat and moisture promoted deterioration of raw silk estimated by amino acid analysis. Journal of Cultural Heritage 12 (4):408–411. doi: 10.1016/j.culher.2011.03.002.
  • Zhou, Y., B. Wang, M. Sui, F. Zhao, and Z. Hu. 2015. Detection of proteinaceous binders in ancient Chinese textiles by enzyme-linked immunosorbent assay. Studies in Conservation 60 (6):368–374. doi: 10.1179/2047058414Y.0000000150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.