251
Views
9
CrossRef citations to date
0
Altmetric
Vibrational Spectroscopy

Prompt Screening of the Alterations in Biochemical and Mineral Profile of Wheat Plants Treated with Chromium Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and X-ray Fluorescence Excited by Synchrotron Radiation

, , &
Pages 482-508 | Received 10 Apr 2019, Accepted 13 Aug 2019, Published online: 25 Aug 2019

References

  • Aldrich, M. V., J. L. Gardea-Torresdey, J. R. Peralta-Videa, and J. G. Parsons. 2003. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): Chromate-plant interaction in hydroponics and solid media studied using XAS. Environmental Science & Technology 37(9):1859–64. doi:10.1021/es0208916.
  • Baker, M. J., Trevisan, J. P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C., et al. 2014. Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols 9(8):1771–91. doi:10.1038/nprot.2014.110.
  • Barceló, J. C., Poschenrieder, M. D. Vázquez, and B. Gunsé. 1993. Beneficial and Toxic Effects of chromium in plants: Solution culture, pot and field studies. Studies in Environmental Science 55:147–71.
  • Bluskov, S., J. M. Arocena, O. O. Omotoso, and J. P. Young. 2005. Uptake, distribution, and speciation of chromium in Brassica Juncea. International Journal of Phytoremediation 7(2):153–65. doi:10.1080/16226510590950441.
  • Boeriu, C. G., D. Bravo, R. J. A. Gosselink, and J. E. G. van Dam. 2004. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products 20(2):205–18. doi:10.1016/j.indcrop.2004.04.022.
  • Butler, H. J., S. Adams, M. R. McAinsh, and F. L. Martin. 2017. Detecting nutrient deficiency in plant systems using synchrotron Fourier-transform infrared microspectroscopy. Vibrational Spectroscopy 90:46–55. doi:10.1016/j.vibspec.2017.03.004.
  • Cary, E. E., W. H. Allaway, and O. E. Olson. 1977. Control of chromium concentrations in food plants. 1. Absorption and translocation of chromium by plants. Journal of Agricultural and Food Chemistry 25(2):300–4. doi:10.1021/jf60210a048.
  • Cataldo, D. A., and R. E. Wildung. 1978. Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental Health Perspectives 27:149–59. doi:10.2307/3428874.
  • Chanda, S. V., and N. G. Parmar. 2003. Effects of chromium on hypocotyl elongation, wall components, and peroxidase activity of Phaseolus vulgaris seedlings. New Zealand Journal of Crop and Horticultural Science 31(2):115–24. doi:10.1080/01140671.2003.9514244.
  • Covelo, E. F., M. L. Andrade Couce, and F. A. Vega. 2004. Competitive adsorption and desorption of cadmium, chromium, copper, nickel, lead, and zinc by humic umbrisols. Communications in Soil Science and Plant Analysis 35(19/20):2709–29.
  • Dey, S. K., P. P. Jena, and S. Kundu. 2009. Antioxidative efficiency of Triticum aestivum L. exposed to chromium stress. Journal of Environmental Biology 30(4):539–44.
  • Du, S., C. Yu, L. Tang, and L. Lu. 2018. Applications of SERS in the detection of stress-related substances. Nanomaterials 8(10):757.doi:10.3390/nano8100.
  • Economou-Eliopoulos, M., D. Antivachi, C. Vasilatos, and I. Megremi. 2012. Evaluation of the Cr(VI) and other toxic element contamination and their potential sources: The case of the Thiva basin (Greece). Geoscience Frontiers 3(4):523–39. doi:10.1016/j.gsf.2011.11.010.
  • Emamverdian, A., Y. Ding, F. Mokhberdoran, and Y. Xie. 2015. Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal 2015:1. doi:10.1155/2015/756120.
  • Fackler, K., J. S. Stevanic, T. Ters, B. Hinterstoisser, M. Schwanninger, and L. Salmén. 2010. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme and Microbial Technology 47(6):257–67. doi:10.1016/j.enzmictec.2010.07.009.
  • Fasoli, M., R. Dell’Anna, S. D. Santo, R. Balestrini, A. Sanson, M. Pezzotti, F. Monti, and S. Zenoni. 2016. Hemicelluloses and celluloses show specific dynamics in the internal and external surfaces of grape berry skin during ripening. Plant and Cell Physiology 57(6):1332–49. doi:10.1093/pcp/pcw080.
  • Ghaffar, S. H., and M. Fan. 2013. Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy 57:264–79. doi:10.1016/j.biombioe.2013.07.015.
  • Gierlinger, N. 2018. New insights into plant cell walls by vibrational microspectroscopy. Applied Spectroscopy Reviews 53(7):517–51. doi:10.1080/05704928.2017.1363052.
  • Gill, R. A., L. Zang, B. Ali, M. A. Farooq, P. Cui, S. Yang, S. Ali, and W. Zhou. 2015. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–64. doi:10.1016/j.chemosphere.2014.06.029.
  • Gomes, M. A., R. A. Hauser-Davis, M. S. Suzuki, and A. P. Vitória. 2017. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicology and Environmental Safety 140:55–64. doi:10.1016/j.ecoenv.2017.01.042.
  • Gong, X., and J. H. Liu. 2017. Detection of free polyamines in plants subjected to abiotic stresses by high-performance liquid chromatography (HPLC). Methods in Molecular Biology 1631:305–311. doi:10.1007/978-1-4939-7136-7_19.
  • Gupta, R., R. Mehta, N. Kumar, and D. S. Dahiya. 2000. Effect of chromium (VI) on phosphorus fractions in developing sunflower seeds. Crop Research 20:46–51.
  • Hayat, S., G. Khalique, M. Irfan, A. S. Wani, B. N. Tripathi, and A. Ahmad. 2012. Physiological changes induced by chromium stress in plants: An overview. Protoplasma 249(3):599. doi:10.1007/s00709-011-0331-0.
  • Hoagland, D.R., and D.I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular 347. https://archive.org/details/watercultureme3450hoag/page/n5.
  • Höfte, H.,. A. Peaucelle, and S. Braybrook. 2012. Cell wall mechanics and growth control in plants: The role of pectins revisited. Frontiers in Plant Science 3. doi:10.3389/fpls.2012.00121.
  • Horiuchi, R., Y. Nakajima, S. Kashiwada, and N. Miyanishi. 2018. Effects of silver nanocolloids on plant complex type N-glycans in Oryza sativa roots. Scientific Reports 8:1–8. doi:10.1038/s41598-018-19474-z.
  • Ishii, T., T. Matsunaga, P. Pellerin, M. A. O’Neill, A. Darvill, and P. Albersheim. 1999. The plant cell wall polysaccharide rhamnogalacturonan ii self-assembles into a covalently cross-linked dimer. Journal of Biological Chemistry 274(19):13098–104. doi:10.1074/jbc.274.19.13098.
  • Jacoby, R., M. Peukert, A. Succurro, A. Koprivova, and S. Kopriva. 2017. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science 8:1617. doi:10.3389/fpls.2017.01617.
  • Jones, R. G. W., and O. R. Lunt. 1967. The function of calcium in plants. The Botanical Review 33(4):407–26. doi:10.1007/BF02858743.
  • Juarez, Angela Beatriz, Laura Barsanti, Vincenzo Passarelli, Valter Evangelista, Nicoletta Vesentini, Visitacion Conforti, and Paolo Gualtieri. 2008. In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorina unicocca and Chlorella kessleri. Journal of Environmental Monitoring 10(11):1313–8. doi:10.1039/b809566c.
  • Kaiser, B. N., S. Moreau, J. Castelli, R. Thomson, A. Lambert, S. Bogl, A. Puppo, and D. A. Day. 2003. The soybean NRAMP homologue, GmDMTI, is a symbiotic divalent metal transp011er capable of ferrous iron transport. The Plant Journal 35(3):295–304. doi:10.1046/j.1365-313X.2003.01802.x.
  • Kataoka, Y., and T. Kondo. 1998. FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall Formation. Macromolecules 31(3):760–4. doi:10.1021/ma970768c.
  • Kim, J. H., and H. Tsukaya. 2015. Regulation of plant growth and development by the growth-regulating factor and GRF-interacting factor duo. Journal of Experimental Botany 66:6093–107. doi:10.1093/jxb/erv349.
  • Kumar, S., and U. N. Joshi. 2008. Nitrogen metabolism as affected by hexavalent chromium in sorghum (Sorghum bicolor L.). Environmental and Experimental Botany 64(2):135–44. doi:10.1016/j.envexpbot.2008.02.005.
  • Labra, M., E. Gianazza, R. Waitt, I. Eberini, A. Sozzi, S. Regondi, F. Grassi, and E. Agradi. 2006. Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62(8):1234–44. doi:10.1016/j.chemosphere.2005.06.062.
  • Liu, D., J. Zou, M. Wang, and W. Jiang. 2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology 99(7):2628–36. doi:10.1016/j.biortech.2007.04.045.
  • Liu, D., W. Jiang, and M. Li. 2008. Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas 117(1):23–9. doi:10.1111/j.1601-5223.1992.tb00003.x.
  • López-Luna, J., M. C. González-Chávez, F. J. Esparza-García, and R. Rodríguez-Vázquez. 2009. Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials 163(2/3):829–34. doi:10.1016/j.jhazmat.2008.07.034.
  • Lunk, H. 2015. Discovery, properties and applications of chromium and its compounds. Chem Texts 1:6. doi:10.1007/s40828-015-0007-z.
  • Mallick, S., G. Sinam, R. Kumar Mishra, and S. Sinha. 2010. Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicology and Environmental Safety 73(5):987–95. doi:10.1016/j.ecoenv.2010.03.004.
  • Marguí, E., I. Queralt, and M. Hidalgo. 2009. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. Trac Trends in Analytical Chemistry 28(3):362–72. doi:10.1016/j.trac.2008.11.011.
  • Mazurek, S., A. Mucciolo, B. M. Humbel, and C. Nawrath. 2013. Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals. The Plant Journal 74(5):880–91. doi:10.1111/tpj.12164.
  • Millaleo, R., M. Reyes-Díaz, A. G. Ivanov, M. L. Mora, and M. Alberdi. 2010. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition 10(4):470–94. doi:10.4067/S0718-95162010000200008.
  • Miller, L. M., and P. Dumas. 2010. From structure to cellular mechanism with infrared Microspectroscopy. Current Opinion in Structural Biology 20(5):649–56. doi:10.1016/j.sbi.2010.07.007.
  • Misra, S. G., and P. C. Jaiswal. 1982. Absorption of Fe by spinach on chromium (VI) treated soil. Journal of Plant Nutrition 5(4–7):755–60. doi:10.1080/01904168209363005.
  • Movasaghi, Z., S. Rehman, and I. Rehman. 2008. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews. 43(2):134–79. doi:10.1080/05704920701829043.
  • NovakovíC, L., T. Guo, A. Bacic, A. Sampathkumar, and K. L. Johnson. 2018. Hitting the wall—sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants 7:89. doi:10.3390/plants7040089.
  • Ogbaga, C. C., P. Stepien, B. C. Dyson, N. J. W. Rattray, D. I. Ellis, R. Goodacre, and G. N. Johnson. 2016. Biochemical analyses of sorghum varieties reveal differential responses to drought. PLoS ONE 11(5):e0154423. doi:10.1371/journal.pone.0154423.
  • Panda, S. K., and S. Choudhury. 2005. Chromium stress in plants. Brazilian Journal of Plant Physiology 17(1):95–102. doi:10.1590/S1677-04202005000100008.
  • Pandey, V., V. Dixit, and R. Shyam. 2009. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236(1–4):85–95. doi:10.1007/s00709-009-0061-8.
  • Puls, R. W., D. A. Clark, C. J. Paul, and J. Vardy. 1994. Transport and transformation of hexavalent chromium through soils and into ground water. Journal of Soil Contamination 3(2):203–24. doi:10.1080/15320389409383463.
  • Rai, V., P. K. Tandon, and S. Khatoon. 2014. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: Vincristine and vinblastine. Biomed Resm Int. 2014. Biomed Research International doi: 10.1155/2014/934182. doi:10.1155/2014/934182.
  • Regvar, M., D. Eichert, B. Kaulich, A. Gianoncelli, P. Pongrac, and K. Vogel-Mikuš. 2013. Biochemical characterization of cell types within leaves of metal-hyperaccumulating Noccaea praecox (Brassicaceae). Plant and Soil 373(1-2):157–71. doi:10.1007/s11104-013-1768-z.
  • Rogers, H., and S. Munné-Bosch. 2016. Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: Similar but different. Plant Physiology 171(3):1560–8. doi:10.1104/pp.16.00163.
  • Rout, G. R., S. Samantaray, and P. Das. 1997. Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. Journal of Plant Nutrition 20(4/5):473–83. doi:10.1080/01904169709365268.
  • Rout, G. R., S. Samantaray, and P. Das. 2000. Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) link. Chemosphere 40(8):855–9. doi:10.1016/S0045-6535(99)00303-3.
  • Samantaray, S.,. G. R. Rout, and P. Das. 1998. Role of chromium on plant growth and metabolism. Acta Physiologiae Plantarum 20(2):201–12. doi:10.1007/s11738-998-0015-3.
  • Samantary, S. 2002. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47(10):1065–72. doi:10.1016/S0045-6535(02)00091-7.
  • Sawalha, M. F., J. L. Gardea-Torresdey, J. G. Parsons, G. Saupe, and J. R. Peralta-Vide. 2005. Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP–OES. Microchemical Journal 81(1):122–32. doi:10.1016/j.microc.2005.01.008.
  • Schwanninger, M., J.C. Rodrigues, H. Pereira, and B. Hinterstoisser. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy 36(1):23–40. doi:10.1016/j.vibspec.2004.02.003.
  • Shanker, A. K., and G. Pathmanabhan. 2004. Speciation dependant antioxidative response in roots and leaves of Sorghum (Sorghum bicolor (L) Moench cv CO 27) under Cr(III) and Cr(VI) stress. Plant and Soil 265(1/2):141–51. doi:10.1007/s11104-005-0332-x.
  • Shanker, A. K., C. Cervantes, H. Loza-Tavera, and S. Avudainayagam. 2005. Chromium toxicity in plants. Environment International 31(5):739–53. doi:10.1016/j.envint.2005.02.003.
  • Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. doi:10.1155/2012/217037.
  • Sharma, P., V. Bihari, S. K. Agarwal, V. Verma, C. N. Kesavachandran, B. S. Pangtey, N. Mathur, K. P. Singh, M. Srivastava, and S. K. Goel. 2012. Groundwater contaminated with hexavalent chromium [Cr (VI)]: A health survey and clinical examination of community inhabitants (Kanpur, India). PLoS One 7(10):e47877. doi:10.1371/journal.pone.0047877.
  • Sharma, S.,. A. S. Bharti, M. K. Tiwari, and K. N. Uttam. 2018a. Effect of manganese stress on the mineral content of the leaves of wheat seedlings by use of X-ray fluorescence excited by synchrotron radiation. Spectroscopy Letters 51(6):302–10. doi:10.1080/00387010.2018.1475399.
  • Sharma, S., and K. N. Uttam. 2019a. Nondestructive and rapid probing of biochemical response of arsenic stress on the leaves of wheat seedlings using attenuated total reflectance Fourier transform infrared spectroscopy. Analytical Letters 52(2):268–87.
  • Sharma, S., and K. N. Uttam. 2016. Investigation of the manganese stress on wheat plant by attenuated total reflectance Fourier transform infrared spectroscopy. Spectroscopy Letters 49(8):520–8. doi:10.1080/00387010.2016.1212897.
  • Sharma, S., and K. N. Uttam. 2017. Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy. Vibrational Spectroscopy 92:135–50. doi:10.1016/j.vibspec.2017.06.004.
  • Sharma, S., and K. N. Uttam. 2018. Early diagnosis of mercury stress of wheat seedlings using attenuated total reflection Fourier transform infrared spectroscopy. Analytical Letters 51(10):1544–63. doi:10.1080/00032719.2017.1383411.
  • Sharma, S., and K. N. Uttam. 2019b. Non-destructive and rapid interrogation of biochemical response of the leaves of wheat seedlings towards Al2O3 nanoparticles stress using attenuated total reflectance Fourier transform infrared spectroscopy. Vibrational Spectroscopy 100:142–51. doi:10.1016/j.vibspec.2018.11.005.
  • Sharma, S., R. Uttam, P. Singh, and K. N. Uttam. 2018b. Detection of vibrational spectroscopic biomarkers of the effect of gold nanoparticles on wheat seedlings using attenuated total reflectance Fourier transform infrared spectroscopy. Analytical Letters 51(14):2271–94. doi:10.1080/00032719.2017.1423077.
  • Sinha, S.,. R. Saxena, and S. Singh. 2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58(5):595–604. doi:10.1016/j.chemosphere.2004.08.071.
  • Smirnoff, N. 1995. Antioxidant systems and plant response to the environment. In Smirnoff, V. (Ed.), Environment and plant metabolism: Flexibility and acclimation (pp. 217–243). Oxford: Bios Scientific Publishers.
  • Stambulska, U. Y., M. M. Bayliak, and V. I. Lushchak. 2018. Chromium(VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Research International. Biomed Research International 2018. doi:10.1155/2018/8031213.
  • Subrahmanyam, D. 2008. Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46(3):339–45. doi:10.1007/s11099-008-0062-4.
  • Sundaramoorthy, P., A. Chidambaram, K. S. Ganesh, P. Unnikannan, and L. Baskaran. 2010. Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies 333(8):597–607. doi:10.1016/j.crvi.2010.03.002.
  • Szalontai, B., Y. Nishiyama, Z. Gombos, and N. Murata. 2000. Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803 The e¡ects of lipid unsaturation and the protein-to-lipid ratio. Biochimica et Biophysica Acta (Bba) – Biomembranes 1509(1/2):409–19. doi:10.1016/S0005-2736(00)00323-0.
  • Tiwari, K. K., N. K. Singh, and U. N. Rai. 2013. Chromium phytotoxicity in radish (Raphanus sativus): Effects on metabolism and nutrient uptake. Bulletin of Environmental Contamination and Toxicology 91(3):339–44. doi:10.1007/s00128-013-1047-y.
  • Tiwari, K. K., S. Dwivedi, N. K. Singh, U. N. Rai, and R. D. Tripath. 2009. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativumL.): biochemical changes and translocation of essential nutrients. Journal of Environmental Biology 30(3):389–94.
  • Tripathy, B. C., and R. Oelmüller. 2012. Reactive oxygen species generation and signalling in plants. Plant Signaling & Behavior 7:1621–33. doi:10.4161/psb.22455.
  • Vajpayee, P., S. C. Sharma, R. D. Tripathi, U. N. Rai, and M. Yunus. 1999. Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39(12):2159–69. doi:10.1016/S0045-6535(99)00095-8.
  • Vernay, P., C. Gauthier-Moussard, and A. Hitmi. 2007. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68(8):1563–75. doi:10.1016/j.chemosphere.2007.02.052.
  • Vijayan, P., I. R. Willick, R. Lahlali, C. Karunakaran, and K. K. Tanino. 2015. Synchrotron radiation sheds fresh light on plant research: The use of powerful techniques to probe structure and composition of plants. Plant and Cell Physiology 56(7):1252–63. doi:10.1093/pcp/pcv080.
  • Wallace, A., S. M. Soufi, J. W. Cha, and E. M. Romney. 1976. Some effects of chromium toxicity on bush bean plants grown in soil. Plant and Soil 44(2):471–3. doi:10.1007/BF00015901.
  • Wei, Z., D. Jiao, and J. Xu. 2015. Using Fourier transform infrared spectroscopy to study effects of magnetic field treatment on wheat. Journal of Spectroscopy 2015, doi:10.1155/2015/570190.
  • White, P. J., and M. R. Broadley. 2003. Calcium in plants. Annals of Botany 92(4):487–511. doi:10.1093/aob/mcg164.
  • Yang, J., and H. E. Yen. 2002. Early salt stress effects on the changes in chemical composition in leaves of ice plant and arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiology 130(2):1032–42. doi:10.1104/pp.004325.
  • Zaimoglu, Z.,. N. Koksal, N. Basci, M. Kesici, H. Gulen, and F. Budak. 2011. Antioxidative enzyme activities in Brassica juncea L. and Brassica oleracea L. plants under chromium stress. International Journal of Food, Agriculture & Environment 9:676–9.
  • Zeid, I. M. 2001. Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum 44(1):111–5.
  • Zou, J., M. Wang, W. Jiang, and D. Liu. 2006. Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biologica Cracoviensia Series Botanica 48:7–12.
  • Zuo, Y., Y. Liu, F. Zhang, and P. Christie. 2004. A study on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Science and Plant Nutrition 50(7):1071–8. doi:10.1080/00380768.2004.10408576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.