404
Views
5
CrossRef citations to date
0
Altmetric
Natural Product Analysis

Metal Nano-Oxide based Colorimetric Sensor Array for the Determination of Plant Polyphenols with Antioxidant Properties

, , , &
Pages 627-645 | Received 11 May 2019, Accepted 28 Aug 2019, Published online: 09 Sep 2019

References

  • Abhishek, N., N. N. Kumar, A. Naushi, K. Anil, L. Alok, A. P. Arvind, T. S. Krishna. 2017. Simultaneous quantification of six phenolic compounds in various parts of Moringa oleifera Lam. using high-performance thin-layer chromatography. JPC – Journal of Planar Chromatography – Modern TLC. 30(6):502–9. doi:10.1556/1006.2017.30.6.7.
  • Aguilera, T., J. Lozano, J. A. Paredes, F. J. Alvarez, and J. I. Suárez. 2012. Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction. Sensors 12(6):8055–72. doi:10.3390/s120608055.
  • Ajila, C. M., S. K. Brar, M. Verma, R. D. Tyagi, S. Godbout, and J. R. Valero. 2011. Extraction and analysis of polyphenols: Recent trends. Critical Reviews in Biotechnology 31(3):227–49. doi:10.3109/07388551.2010.513677.
  • Alarcon-Angeles, G., G. A. Álvarez-Romero, and A. Merkoçi. 2016. Chapter 7 – Emerging nanomaterials for analytical detection. In Comprehensive analytical chemistry, ed. V. Scognamiglio, G. Rea, F. Arduini, and G. Palleschi, 195–246. Elsevier, Amsterdam.
  • Alecu, A., C. Albu, S.C. Litescu, S.A.V. Eremia, G.L. Radu. 2016. Phenolic and anthocyan profile of Valea Calugareasca red wines by HPLC-DAD-MS and MALDI-ToF analysis. Food Analytical Methods 9:300–10. doi:10.1007/s12161-015-0197-4.
  • Askim, J. R., Zh. Li, M. K. LaGasse, J. M. Rankin, and K. S. Suslick. 2016. An optoelectronic nose for identification of explosives. Chemical Science 7(1):199–206. doi:10.1039/C5SC02632F.
  • Bordbar, M. M., J. Tashkhourian, and B. Hemmateenejad. 2018. Qualitative and quantitative analysis of toxic materials in adulterated fruit pickle samples by a colorimetric sensor array. Sensors and Actuators B: Chemical 257:783–91. doi:10.1016/j.snb.2017.11.010.
  • Bordbar, M. M., B. Hemmateenejad, J. Tashkhourian, S. F. Nami-Ana. 2018. An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants. Microchimica Acta 185:493. doi:10.1007/s00604-018-3021-1.
  • Cardile, V., A. C. E. Graziano, and A.Venditti. 2015. Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. Natural Product Research, 29(23):2256–2260. doi:10.1080/14786419.2014.1000897.
  • Carey, J. R., K. S. Suslick, K. I. Hulkower, J. A. Imlay, K. R. C. Imlay, C. K. Ingison, J. B. Ponder, A. Sen, and A. E. Wittrig. 2011. Rapid identification of bacteria with a disposable colorimetric sensing array. Journal of the American Chemical Society 133(19):7571–6. doi:10.1021/ja201634d.
  • Carito, V., A. Venditti, A. Bianco, M. Ceccatini, A. M. Serrilli, G.Chaldakov, L. Tarani, S. DeNicolò, M. Fiore. 2014. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Natural Product Research 28(22):1970–84. doi:10.1080/14786419.2014.918977.
  • Della Pelle, F., and D. Compagnone. 2018. Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors 18(2):462. doi:10.3390/s18020462.
  • Ding, R., X. Huang, F. Han, H. Dai, E. Teye, and F. Xu. 2014. Rapid and nondestructive evaluation of fish freshness by near infrared reflectance spectroscopy combined with chemometrics analysis. Analytical Methods 6(24):9675–83. doi:10.1039/C4AY01839G.
  • Ghosh, N., T. Chakraborty, S. Mallick, S. Mana, D. Singha, B. Ghosh, and S. Roy. 2015. Synthesis, characterization and study of antioxidant activity of quercetin–magnesium complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 151:807–13. doi:10.1016/j.saa.2015.07.050.
  • Han, F., X. Huang, and E. Teye. 2018. Novel prediction of heavy metal residues in fish using a low-cost optical electronic tongue system based on colorimetric sensors array. Journal of Food Process Engineering e12983. doi:10.1111/jfpe.12983.
  • Hemmateenejad, B., J. Tashkhourian, M. M. Bordbar, and N. Mobaraki. 2017. Development of colorimetric sensor array for discrimination of herbal medicine. Journal of the Iranian Chemical Society 14(3):595–604. doi:10.1007/s13738-016-1008-6.
  • Huang, W., Y. Deng, and Y. He. 2017. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosensors & Bioelectronics 91:89–94. doi:10.1016/j.bios.2016.12.028.
  • Huang, W., Zh. Xie, Y. Deng, and Y. He. 2018. 3,3′,5,5′-tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sensors and Actuators B: Chemical 254:1057–60. doi:10.1016/j.snb.2017.08.005.
  • Huang, X., X. Zou, J. Zhao, J. Shi, X. Zhang, Z. Li, and L. Shen. 2014a. Sensing the quality parameters of Chinese traditional Yao-meat by using a colorimetric sensor combined with genetic algorithm partial least squares regression. Meat Science 98(2):203–10. doi:10.1016/j.meatsci.2014.05.033.
  • Huang, X.-w., X.-b. Zou, J.-y. Shi, Y. Guo, J.-w. Zhao, J. Zhang, and L. Hao. 2014b. Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chemistry 145:549–54. doi:10.1016/j.foodchem.2013.08.101.
  • Ignat, I., I. Volf, and V. I. Popa. 2011. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry 126(4):1821–35. doi:10.1016/j.foodchem.2010.12.026.
  • Ikeda, N. E., E. M. Novak, D. A. Maria, A. S. Velosa, and R. M. Pereira. 2015. Synthesis, characterization and biological evaluation of rutin-zinc(II) flavonoid -metal complex. Chemico-biological Interactions 239:184–91. doi:10.1016/j.cbi.2015.06.011.
  • Ilyas, U. K., D. P. Katare, V. Aeri. 2015. Densitometric Validation and Optimisation of Polyphenols in Ocimum sanctum Linn by High Performance Thin-layer Chromatography. Phytochemical Analysis 20(4):237–46. doi:10.1002/pca.2550.
  • Joseph, S. V., I. Edirisinghe, and B. M. Burton-Freeman. 2016. Fruit polyphenols: A review of anti-inflammatory effects in humans. Critical Reviews Food Science and Nutrition 56(3):419–44. doi:10.1080/10408398.2013.767221.
  • Kasprzak, M. M., A. Erxleben, and J. Ochocki. 2015. Properties and applications of flavonoid metal complexes. RSC Advances 5(57):45853–77. doi:10.1039/C5RA05069C.
  • Kim, S.-Y., J.-A. Ko, B.-S. Kang, and H-J, Park. 2018. Prediction of key aroma development in coffees roasted to different degrees by colorimetric sensor array. Food Chemistry 240:808–16. doi:10.1016/j.foodchem.2017.07.139.
  • Kirsanov, D., O. Mednova, V. Vietoris, P. A. Kilmartin, and A. Legin. 2012. Towards reliable estimation of an “electronic tongue” predictive ability from PLS regression models in wine analysis. Talanta 90:109–16. doi:10.1016/j.talanta.2012.01.010.
  • Lall, R. K., D. N. Syed, V. M. Adhami, M. I. Khan, and H. Mukhtar. 2015. Dietary polyphenols in prevention and treatment of prostate cancer. International Journal of Molecular Sciences 16(2):3350–76. doi:10.3390/ijms16023350.
  • Les, F., A. Venditti, G. Casedas, C. Frezza, M. Guiso, F. Sciubba, M. Serafini, A., Bianco, M. S. Valero, V. Lopez. 2017. Everlasting flower (Helichrysum stoechas Moench) as a potential source of bioactive molecules with antiproliferative, antioxidant, antidiabetic and neuroprotective properties. Industrial Crops and Products 108:295–302. doi:10.1016/j.indcrop.2017.06.043.
  • Mandrone, M., B. Lorenzi, Al. Venditti, L. Guarcini, A. Bianco, C. Sanna, M. Ballero, F. Poli, F. Antognoni. 2015. Antioxidant and anti-collagenase activity of Hypericum hircinum L. Industrial Crops and Products, 76: 402–408. doi:10.1016/j.indcrop.2015.07.012.
  • Motilva, M. J., A. Serra, and A. Macià. 2013. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. Journal of Chromatography A 1292:66–82. doi:10.1016/j.chroma.2013.01.012.
  • Panhwar, Q. K., and S. Memon. 2012. Synthesis and properties of zirconium(IV) and molybdate(II) morin complexes. Journal of Coordination Chemistry 65(7):1130–43. doi:10.1080/00958972.2012.668617.
  • Papoti, V.T., S. Xystouris, G. Papagianniand, and M.Z. Tsimidou. 2011. “Total flavonoid” content assessment via aluminum [Al(III)] complexation reactions. What we really measure? Italian Journal of Food Science 23(3):232–59.
  • Park, S. H., A. Maruniak, J. Kim, G.-R. Yi, and S. H. Lim. 2016. Disposable microfluidic sensor arrays for discrimination of antioxidants. Talanta 153:163–9. doi:10.1016/j.talanta.2016.03.017.
  • Psotová, J., J. Lasovský and J. Vičar. 2003. Metal-chelating properties, electrochemical behavior, scavenging and cytoprotective activities of six natural phenolics. Biomedical Papers 147(2):147–153). doi:10.5507/bp.2003.020.
  • Ryan, K., and K. Ali. 2016. Application of a partial least-squares regression model to retrieve chlorophyll-a concentrations in coastal waters using hyper-spectral data. Ocean Science Journal 51(2):209–21. doi:10.1007/s12601-016-0018-8.
  • Salinas, Y., J. V. Ros-Lis, J.-L. Vivancos, R. Martínez-Máñez, M. D. Marcos, S. Aucejo, N. Herranz, I. Lorente, and E. Garcia. 2014. A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control 35(1):166–76. doi:10.1016/j.foodcont.2013.06.043.
  • Samsonowicz, M., and E. Regulska. 2017. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 173:757–71. doi:10.1016/j.saa.2016.10.031.
  • Samsonowicz, M., E. Regulska, and M. Kalinowska. 2017. Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects. Chemical-Biological Interactions 273:245–56. doi:10.1016/j.cbi.2017.06.016.
  • Sánchez-Rangel, J. C., J. Benavides, J. B. Heredia, L. Cisneros-Zevallos, and D. A. Jacobo-Velázquez. 2013. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods 5(21):5990–9. doi:10.1039/c3ay41125g.
  • Serafini, M., and I. Peluso. 2016. Functional foods for health: the interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Current Pharmaceutical Design 22(44):6701–15. doi:10.2174/1381612823666161123094235.
  • Sharpe, E., R. Bradley, T. Frasco, D. Jayathilaka, A. Marsh, and S. Andreescu. 2014. Metal oxide based multisensor array and portable database for field analysis of antioxidants. Sensors and Actuators. B, Chemical 193:552–62. doi:10.1016/j.snb.2013.11.088.
  • Sharpe, E., T. Frasco, D. Andreescu, and S. Andreescu. 2013. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac). Analyst 138(1):249–62. doi:10.1039/C2AN36205H.
  • Sharpe, E., F. Hua, S. Schuckers, S. Andreescu, and R. Bradley. 2016. Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties. Food Chemistry 192:380–7. doi:10.1016/j.foodchem.2015.07.005.
  • Srivastava, T., and S. K. Mishra. 2015. Novel function of polyphenols in human health: A review. Research Journal of Phytochemistry 9:116–26. doi:10.3923/rjphyto.2015.116.126.
  • Star, A., V. Joshi, S. Skarupo, D. Thomas, and J.-C. P. Gabriel. 2006. Gas sensor array based on metal-decorated carbon nanotubes. The Journal of Physical Chemistry B 110(42):21014–20. doi:10.1021/jp064371z.
  • Toniolo, C., M. Nicoletti, F. Maggi and A.Venditti. 2014. HPTLC determination of chemical composition variability in raw materials used in botanicals. Natural Product Research 28(2):119–126. doi:10.1080/14786419.2013.852546.
  • Tsao, R., and Z. Deng. 2004. Separation procedures for naturally occurring antioxidant phytochemicals. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 812(1-2):85–99. doi:10.1016/j.jchromb.2004.09.028.
  • Vasilescu, A., E. Sharpe, and S. Andreescu. 2012. Nanoparticle-based technologies for the detection of food antioxidants. Current Analytical Chemistry 8(4):495–505. doi:10.2174/157341112803216780.
  • Vilela, D., M. C. González, and A. Escarpa. 2015. Nanoparticles as analytical tools for in-vitro antioxidant capacity assessment and beyond. TrAC Trends in Analytical Chemistry 64:1–16. doi:10.1016/j.trac.2014.07.017.
  • Viswanathan, P., V. Sriram, and G. Yogeeswaran. 2000. Sensitive spectrophotometric assay for 3-hydroxy-substituted flavonoids, based on their binding with molybdenum, antimony, or bismuth. Journal of Agricultural and Food Chemistry 48(7):2802–6. doi:10.1021/jf990357q.
  • Wold, S., M. Sjöström, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and intelligent laboratory systems 58(2):109–30. doi:10.1016/S0169-7439(01)00155-1.
  • Yadav, B. S., R. Yadav, R. B. Yadav, M. Garg. 2016. Antioxidant activity of various extracts of selected gourd vegetables. Journal of Food Science and Technology 53(4):1823–1833. doi:10.1007/s13197-015-1886-0.
  • Zhang, H., and R. Tsao. 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science 8:33–42. doi:10.1016/j.cofs.2016.02.002.
  • Ziyatdinova, G. K., and H. C. Budnikov. 2015. Natural phenolic antioxidants in bioanalytical chemistry: state of the art and prospects of development. Russian Chemical Reviews 84(2):194–224. doi:10.1070/RCR4436.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.