160
Views
5
CrossRef citations to date
0
Altmetric
Electrochemistry

Multilayered Chemically Modified Electrode Based on Carbon Nanotubes Conglutinated by Polydopamine: A New Strategy for the Electrochemical Signal Enhancement for the Determination of Catechol

, , , & ORCID Icon
Pages 1061-1074 | Received 21 Aug 2019, Accepted 17 Nov 2019, Published online: 22 Jan 2020

References

  • Ahammad, A. J. S., T. Akter, A. A. Mamun, T. Islam, M. M. Hasan, M. A. Mamun, S. Faraezi, F. Z. Monira, and J. K. Saha. 2018. Cost-effective electrochemical sensor based on carbon nanotube modified-pencil electrode for the simultaneous determination of hydroquinone and catechol. Journal of the Electrochemical Society 165 (9):B390–B397. doi:10.1149/2.1341809jes.
  • Almeida, L. C., J. P. Correia, and A. S. Viana. 2018. Electrochemical and optical characterization of thin polydopamine films on carbon surfaces for enzymatic sensors. Electrochimica Acta 263:480–9. doi:10.1016/j.electacta.2018.01.077.
  • Cardoso, R. M., R. H. O. Montes, A. P. Lima, R. M. Dornellas, E. Nossol, E. M. Richter, and R. A. A. Munoz. 2015. Multi-walled carbon nanotubes: Size-dependent electrochemistry of phenolic compounds. Electrochimica Acta 176:36–43. doi:10.1016/j.electacta.2015.06.117.
  • Chang, F.-X., S.-L. Liu, and H. Tan. 2019a. Construction of polydopamine and carbon nanotubes modified electrode. Journal of Southwest Minzu University 45:50–5. doi:10.11920/xnmdzk.2019.01.008.
  • Chang, F.-X., Y. Wang, S.-L. Liu, and Y.-J. Zhang. 2019b. Simultaneous detection of catechol and hydroquinone by carboxylated carbon nanotubes modified electrode. Chemical Reagents 41:158–61. doi:10.13822/j.cnki.hxsj.2019006736.
  • Ding, Y.-H., J. Peng, S. U. Khan, and Y. Yuan. 2017. A New Polyoxometalate (POM)-Based Composite  fabrication through POM-assisted polymerization of dopamine and properties as anode materials for high-performance lithium ion battery. Chemistry – A European Journal 23 (43):10338–43. doi:10.1002/chem.201700773.
  • Elancheziyan, M., D. Manoj, D. Saravanakumar, K. Thenmozhi, and S. Senthilkumar. 2017. Amperometric sensing of catechol using a glassy carbon electrode modified with ferrocene covalently immobilized on graphene oxide. Microchimica Acta 184 (8):2925–32. doi:10.1007/s00604-017-2312-2.
  • Fan, L.-M., X.-Y. Li, and X.-W. Kan. 2016. Disposable graphite paper based sensor for sensitive simultaneous determination of hydroquinone and catechol. Electrochimica Acta 213:504–11. doi:10.1016/j.electacta.2016.06.096.
  • Goulart, L. A., R. Goncalves, A. A. Correa, E. C. Pereira, and L. H. Mascaro. 2018. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchimica Acta 185 (1) doi:10.1007/s00604-017-2540-5.
  • Haeshin, L., S. M. Dellatore, W. M. Miller, and P. B. Messersmith. 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–30. doi:10.1126/science.1147241.
  • Huang, J., Y.-Z. Xu, Y.-B. Xiao, H. Zhu, J.-C. Wei, and Y.-W. Chen. 2017. Mussel-inspired, biomimetics-assisted self-assembly of Co3O4 on carbon fibers for flexible supercapacitors. Chemelectrochem 4 (9):2269–77. doi:10.1002/celc.201700369.
  • Ishii, K., T. Furuta, and Y. Kasuya. 2003. High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. Journal of Chromatography B 794 (1):49–56. doi:10.1016/S1570-0232(03)00398-2.
  • Kanyong, P., S. Rawlinson, and J. Davis. 2016. Fabrication and electrochemical characterization of polydopamine redox polymer modified screen-printed carbon electrode for the detection of guanine. Sensors and Actuators B: Chemical 233:528–34. doi:10.1016/j.snb.2016.04.099.
  • Li, L.,. Y.-Y. Zhao, R.-Q. Yu, T.-T. Chen, and X. Chu. 2018. Novel sensitive fluorometric determination of Exonuclease I using polydopamine nanospheres. Analytical Letters 51 (7):998–1012. doi:10.1080/00032719.2017.1368530.
  • Li, Y.-Q., Y.-Z. Li, X.-L. Yu, and Y. Sun. 2019. Electrochemical determination of carbofuran in tomatoes by a Concanavalin A (Con A) polydopamine (PDA)-reduced graphene oxide (RGO)-gold nanoparticle (GNP) glassy carbon electrode (GCE) with immobilized acetylcholinesterase (AChE). Analytical Letters 52 (14):2283–99. doi:10.1080/00032719.2019.1609490.
  • Lin, H.-G., G. Tian, and K.-B. Wu. 2009. Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modified electrode. Food Chemistry 113 (2):701–4. doi:10.1016/j.foodchem.2008.07.073.
  • Liu, K., W.-Z. Wei, J.-X. Zeng, X.-Y. Liu, and Y.-P. Gao. 2006. Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine. Analytical and Bioanalytical Chemistry 385 (4):724–9. doi:10.1007/s00216-006-0489-z.
  • Palladino, P.,. F. Bettazzi, and S. Scarano. 2019. Polydopamine: Surface coating, molecular imprinting, and electrochemistry-successful applications and future perspectives in (bio)analysis. Analytical and Bioanalytical Chemistry 411 (19):4327–38. doi:10.1007/s00216-019-01665-w.
  • Pérez López, B., and A. Merkoçi. 2009. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. The Analyst 134 (1):60–4. doi:10.1039/B808387H.
  • Polásek, M., I. Petriska, M. Pospísilová, and L. Jahodár. 2006. Use of molybdate as novel complex-forming selector in the analysis of polyhydric phenols by capillary zone electrophoresis. Talanta 69 (1):192–8. doi:10.1016/j.talanta.2005.09.026.
  • Qi, H.-L., and C.-X. Zhang. 2005. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17 (10):832–8. doi:10.1002/elan.200403150.
  • Sheng, W.-B., B. Li, X.-L. Wang, B. Dai, B. Yu, X. Jia, and F. Zhou. 2015. Brushing up from “anywhere” under sunlight: A universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science 6 (3):2068–73. doi:10.1039/C4SC03851G.
  • Silva, S. M., F. M. de Oliveira, D. D. Justino, L. T. Kubota, A. A. Tanaka, F. S. Damos, and R. D. S. Luz. 2014. A novel sensor based on manganese azo-macrocycle/carbon nanotubes to perform the oxidation and reduction processes of two diphenol isomers. Electroanalysis 26 (3):602–11. doi:10.1002/elan.201300576.
  • Song, Z.-H., and S. Hou. 2002. Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents. Talanta 57 (1):59–67. doi:10.1016/S0039-9140(02)00006-1.
  • Subramanyam, R., and I. M. Mishra. 2008. Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor: Sludge characteristics. Bioresource Technology 99 (18):8917–25. doi:10.1016/j.biortech.2008.04.067.
  • Sultana, A., K. Sazawa, M. S. Islam, K. Sugawara, and H. Kuramitz. 2019. Determination of tetracycline by microdroplet hydrodynamic adsorptive voltammetry using a multiwalled carbon nanotube paste rotating disk electrode. Analytical Letters 52 (7):1153–64. doi:10.1080/00032719.2018.1523911.
  • Sun, Y.-F., T.-T. Wei, M.-D. Jiang, L.-H. Xu, and Z.-X. Xu. 2018. Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon@polydopamine and beta-cyclodextrin. Sensors and Actuators B: Chemical 255:2155–62. doi:10.1016/j.snb.2017.09.016.
  • Tsai, T. H., S. H. Ku, S. M. Chen, B. S. Lou, M. A. Ali, and F. M. A. Al-Hemaid. 2014. Electropolymerized diphenylamine on functionalized multiwalled carbon nanotube composite film and its application to develop a multifunctional biosensor. Electroanalysis 26 (2):399–408. doi:10.1002/elan.201300495.
  • Wei, Q., F.-L. Zhang, J. Li, B.-J. Li, and C.-S. Zhao. 2010. Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry 1 (9):1430–3. doi:10.1039/c0py00215a.
  • Yan, Y.-R., Q.-T. Huang, C. Wei, S.-R. Hu, H.-Q. Zhang, W.-X. Zhang, W.-Z. Yang, P.-H. Dong, M.-L. Zhu, and Z.-M. Wang. 2016. Microwave-assisted synthesis of carbon dots-zinc oxide/multi-walled carbon nanotubes and their application in electrochemical sensors for the simultaneous determination of hydroquinone and catechol. Rsc Advances 6 (116):115317–25. doi:10.1039/C6RA14363F.
  • Yang, S.-Y., M. Yang, Q.-Y. Liu, X.-J. Wang, H.-B. Fa, Y.-Z. Wang, and C.-J. Hou. 2019. An Ultrasensitive electrochemical sensor based on multiwalled carbon nanotube@reduced graphene oxide nanoribbon composite for simultaneous determination of hydroquinone, catechol and resorcinol. Journal of the Electrochemical Society 166 (6):B547–B553. doi:10.1149/2.0011908jes.
  • Zhang, H. Q., Y.-H. Huang, S.-R. Hu, Q.-T. Huang, C. Wei, W.-X. Zhang, W.-Z. Yang, P.-H. Dong, and A.-Y. Hao. 2015. Self-assembly of graphitic carbon nitride nanosheets-carbon nanotube composite for electrochemical simultaneous determination of catechol and hydroquinone. Electrochimica Acta 176:28–35. doi:10.1016/j.electacta.2015.06.119.
  • Zhao, L., J. Yu, S.-Z. Yue, L.-X. Zhang, Z.-H. Wang, P.-R. Guo, and Q.-Y. Liu. 2018. Nickel oxide/carbon nanotube nanocomposites prepared by atomic layer deposition for electrochemical sensing of hydroquinone and catechol. Journal of Electroanalytical Chemistry 808:245–51. doi:10.1016/j.jelechem.2017.12.019.
  • Zhou, Y.-Z., W.-M. Tang, F.-F. Dang, S.-N. Chai, and L. Zhang. 2014. Electrochemical characterization of poly-beryllon II modified carbon paste electrode and its application to selective determination of pyrocatechol and hydroquinone. Colloids & Surfaces B Biointerfaces 118:148–53. doi:10.1016/j.colsurfb.2014.03.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.