401
Views
14
CrossRef citations to date
0
Altmetric
Preconcentration Techniques

Preparation of Magnetic Molecularly Imprinted Polymer (MMIP) Nanoparticles (NPs) for the Selective Extraction of Tetracycline from Milk

, , , , &
Pages 1097-1112 | Received 06 Aug 2019, Accepted 23 Nov 2019, Published online: 04 Dec 2019

References

  • Bagheri, A. R., M. Arabi, M. Ghaedi, A. Ostovan, X. Y. Wang, J. H. Li, and L. X. Chen. 2019. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 195:390–400. doi:10.1016/j.talanta.2018.11.065.
  • Bakas, I., N. B. Oujji, E. Moczko, G. Istamboulie, S. Piletsky, E. Piletska, E. Ait-Addi, I. Ait-Ichou, T. Noguer, and R. Rouillon. 2013. Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil. Journal of Chromatography A 1274:13–8. doi:10.1016/j.chroma.2012.11.061.
  • Can, N. O., G. Arli, and J. Liq. 2014. Analysis of acrylamide in traditional and nontraditional foods in turkey using HPLC-DAD with SPE cleanup. Journal of Liquid Chromatography & Related Technologies 37:850–63. doi:10.1080/10826076.2012.758148.
  • Canale, F., C. Cordero, C. Baggiani, P. Baravalle, C. Giovannoli, and C. Bicchi. 2010. Development of a molecularly imprinted polymer for selective extraction of bisphenol A in water samples. Journal of Separation Science 33 (11):1644–51. doi:10.1002/jssc.201000013.
  • Ceva-Antunes, P. M. N., H. R. Bizzo, A. S. Silva, C. P. S. Carvalho, and O. A. C. Antunes. 2006. Analysis of volatile composition of siriguela (Spondias purpurea L.) by solid phase microextraction (SPME). LWT-Food Science and Technology 39 (4):437-43. doi:10.1016/j.lwt.2005.02.007l.
  • Chen, L., X. Wang, W. Lu, X. Wu, and J. Li. 2016. Molecular imprinting: Perspectives and applications. Chemical Society Reviews 45 (8):2137–211. doi:10.1039/C6CS00061D.
  • Chen, L. G., and B. Li. 2013. Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey. Food Chemistry 141 (1):23–8. doi:10.1016/j.foodchem.2013.02.085.
  • Chen, L. G., J. Liu, Q. L. Zeng, H. Wang, A. M. Yu, H. Q. Zhang, and L. Ding. 2009. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. Journal of Chromatography A 1216 (18):3710–9. doi:10.1016/j.chroma.2009.02.044.
  • Chen, L. X., S. F. Xu, and J. H. Li. 2011. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chemical Society Reviews 40 (5):2922–42. doi:10.1039/c0cs00084a.
  • Dai, J. D., J. M. Pan, L. C. Xu, X. X. Li, Z. P. Zhou, R. X. Zhang, and Y. S. Yan. 2012. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. Journal of Hazardous Materials 205-206:179–88. doi:10.1016/j.jhazmat.2011.12.056.
  • Dai, J. D., Z. P. Zhou, C. Y. Zhao, X. Wei, X. H. Dai, L. Gao, Z. J. Cao, and Y. S. Yan. 2014. Versatile method to obtain homogeneous imprinted polymer thin film at surface of superparamagnetic nanoparticles for tetracycline binding. Industrial & Engineering Chemistry Research 53 (17):7157–66. doi:10.1021/ie404140y.
  • Feng, M. X., G. N. Wang, K. Yang, H. Z. Liu, and J. P. Wang. 2016. Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control 69:171–6. doi:10.1016/j.foodcont.2016.04.050.
  • Han, Q., X. Shen, W. Y. Zhu, C. H. Zhu, X. M. Zhou, and H. J. Jiang. 2016. Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol. Biosensors and Bioelectronics 79:180–6. doi:10.1016/j.bios.2015.12.017.
  • Hou, W. J., Z. Q. Shi, Y. M. Guo, X. Sun, and X. Y. Wang. 2017. An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline. Bioprocess and Biosystems Engineering 40 (9):1419–25. doi:10.1007/s00449-017-1799-6.
  • Huval, C. C., M. J. Bailey, W. H. Braunlin, S. R. Holmes-Farley, W. H. Mandeville, J. S. Petersen, S. C. Polomoscanik, R. J. Sacchiro, X. Chen, and P. K. Dhal. 2001. Novel cholesterol lowering polymeric drugs obtained by molecular imprinting. Macromolecules 34 (6):1548–50. doi:10.1021/ma001898f.
  • Kong, X., R. X. Gao, X. W. He, L. X. Chen, and Y. K. Zhang. 2012. Synthesis and characterization of the core-shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. Journal of Chromatography A 1245:8–16. doi:10.1016/j.chroma.2012.04.061.
  • Lian, W. J., S. Liu, L. Wang, and H. Y. Liu. 2015. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes. Biosensors and Bioelectronics 73:214–20. doi:10.1016/j.bios.2015.06.006.
  • Long, C. Y., Z. B. Mai, X. F. Yang, B. H. Zhu, X. M. Xu, X. D. Huang, and X. Y. Zou. 2011. A new liquid–liquid extraction method for determination of 6 azo-dyes in chilli products by high-performance liquid chromatography. Food Chemistry 126 (3):1324–9. doi:10.1016/j.foodchem.2010.11.089.
  • Ma, G. F., and L. G. Chen. 2014. Development of magnetic molecularly imprinted polymers based on carbon nanotubes-application for trace analysis of pyrethroids in fruit matrices. Journal of Chromatography A 1329:1–9. doi:10.1016/j.chroma.2013.12.079.
  • Ma, R. T., and Y. P. Shi. 2015. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract. Talanta 134:650–6. doi:10.1016/j.talanta.2014.12.003.
  • Ma, W., S. T. Li, L. Chen, J. Sun, and Y. S. Yan. 2017. Core-shell thermal-responsive and magnetic molecularly imprinted polymers based on mag-yeast for selective adsorption and controlled release of tetracycline. Journal of the Iranian Chemical Society 14 (1):209–19. doi:10.1007/s13738-016-0971-2.
  • Mohamed, R., J. Richoz-Payot, E. Gremaud, P. Mottier, E. Yilmaz, J. C. Tabet, and P. A. Guy. 2007. Advantages of molecularly imprinted polymers LC-ESI-MS/MS for the selective extraction and quantification of chloramphenicol in milk-based matrixes. Comparison with a classical sample preparation. Analytical Chemistry 79 (24):9557–65. doi:10.1021/ac7019859.
  • Niu, Y. L., C. A. Liu, J. Yang, M. H. Ma, Y. R. Gong, Y. Wang, and B. L. Gong. 2016. Preparation of tetracycline surface molecularly imprinted material for the selective recognition of tetracycline in milk. Food Analytical Methods 9 (8):2342–51. doi:10.1007/s12161-016-0422-9.
  • Nyam, K. L., C. P. Tan, R. Karim, O. M. Lai, K. Long, and Y. B. C. Man. 2010. Extraction of tocopherol-enriched oils from Kalahari melon and roselle seeds by supercritical fluid extraction (SFE-CO2). Food Chemistry 119 (3):1278–83. doi:10.1016/j.foodchem.2009.08.007.
  • Ostovan, A., M. Ghaedi, M. Arabi, Q. Yang, J. H. Li, and L. X. Chen. 2018. Hydrophilic multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins. ACS Applied Materials & Interfaces 10 (4):4140–50. doi:10.1021/acsami.7b17500.
  • Peng, R. F., Z. Q. Zhou, Q. Wang, Q. W. Yu, X. X. Yan, H. X. Qin, Y. Y. Lei, H. B. He, L. Q. Luo, and Q. Wang. 2019. An investigation of template anchoring strategy for molecularly imprinting materials based on nanomagnetic polyhedral oligomeric silsesquioxanes composites. Journal of Chromatography A 1597:28–38. doi:10.1016/j.chroma.2019.03.036.
  • Petković, H., T. Lukežič, and J. Šušković. 2017. Biosynthesis of oxytetracycline by Streptomyces rimosus: Past, present and future directions in the development of tetracycline antibiotics. Food Technology and Biotechnology 55 (1):3–13. doi:10.17113/ftb.55.01.17.4617.
  • Ramezani, M., M. Danesh, P. Lavaee, K. Abnous, and S. M. Taghdisi. 2015. A novel colorimetric triple-helix molecular switetracyclineh aptasensor for ultrasensitive detection of tetracycline. Biosensors and Bioelectronics 70:181–7. doi:10.1016/j.bios.2015.03.040.
  • Ridgway, K., S. P. D. Lalljie, and R. M. Smith. 2007. Sample preparation techniques for the determination of trace residues and contaminants in foods. Journal of Chromatography A 1153 (1-2):36–53. doi:10.1016/j.chroma.2007.01.134.
  • Sadeghi, S., and M. Jahani. 2013. Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of florfenicol in food samples. Food Chemistry 141 (2):1242–51. doi:10.1016/j.foodchem.2013.04.027.
  • Schacht, J., A. E. Talaska, and L. P. Rybak. 2012. Cisplatin and aminoglycoside antibiotics: Hearing loss and its prevention. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 295 (11):1837–50. doi:10.1002/ar.22578.
  • Singh, D., R. K. Gautam, R. Kumar, B. K. Shukla, V. Shankar, and V. Krishna. 2014. Citric acid coated magnetic nanoparticles: Synthesis, characterization and application in removal of Cd(II) ions from aqueous solution. Journal of Water Process Engineering 4:233–41. doi:10.1016/j.jwpe.2014.10.005.
  • Sun, B. H., X. J. Ni, Y. H. Cao, and G. Q. Cao. 2017. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb. Biosensors and Bioelectronics 91:354–8. doi:10.1016/j.bios.2016.12.056.
  • Sybille, M., K. Kim, and F. Jan. 2015. Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis-A review. Chromatographia 2:293–381. doi:10.3390/chromatography2030293.
  • Wang, X. M., P. F. Huang, X. M. Ma, H. Wang, X. Q. Lu, and X. Z. Du. 2017. Preparation and evaluation of magnetic core-shell mesoporous molecularly imprinted polymers for selective adsorption of tetrabromobisphenol S. Talanta 166:300–5. doi:10.1016/j.talanta.2017.01.067.
  • Wang, Y. F., H. X. Jin, Y. G. Wang, L. Y. Yang, X. K. OuYang, and W. J. Wu. 2016. Synthesis and characterization of magnetic molecularly imprinted polymer for the enrichment of ofloxacin enantiomers in fish samples. Molecules 21 (7):915. doi:10.3390/molecules21070915.
  • Wu, X. Q., X. Y. Wang, W. H. Lu, X. R. Wang, J. H. Li, H. Y. You, H. Xiong, and L. X. Chen. 2016. Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A. Journal of Chromatography A 1435:30–8. doi:10.1016/j.chroma.2016.01.040.
  • Xu, Y., Y. H. Tang, Y. Y. Zhao, R. X. Gao, J. J. Zhang, D. L. Fu, Z. L. Li, H. C. Li, and X. S. Tang. 2018. Bifunctional monomer magnetic imprinted nanomaterials for selective separation of tetracyclines directly from milk samples. Journal of Colloid and Interface Science 515:18–26. doi:10.1016/j.jcis.2018.01.001.
  • Yan, H. Y., X. L. Cheng, and N. Sun. 2013. Synthesis of multi-core-shell magnetic molecularly imprinted microspheres for rapid recognition of dicofol in tea. Journal of Agricultural and Food Chemistry 61 (11):2896–901. doi:10.1021/jf400847b.
  • Zheng, L. F., X. E. Zhao, W. H. Ji, X. Wang, Y. D. Tao, J. Sun, Y. Q. Xu, X. Wang, S. Y. Zhu, and J. M. You. 2018. Core-shell magnetic molecularly imprinted polymers used rhodamine B hydroxyproline derivate as template combined with in situ derivatization for the specific measurement of L-hydroxyproline. Journal of Chromatography A 1532:30–9. doi:10.1016/j.chroma.2017.11.053.
  • Zhu, L. L., Y. H. Cao, and G. Q. Cao. 2014. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A. Biosensors & Bioelectronics 54:258–61. doi:10.1016/j.bios.2013.10.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.