376
Views
25
CrossRef citations to date
0
Altmetric
Environmental Analysis

Application of Response Surface Methodology for the Optimization of Copper Removal from Aqueous Solution by Activated Carbon Prepared Using Waste Polyurethane

, &
Pages 1343-1365 | Received 09 Nov 2019, Accepted 12 Dec 2019, Published online: 23 Dec 2019

References

  • Ahmad, Z., B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, and S. Wang. 2018. Removal of Cu (II), Cd (II) and Pb (II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production 180:437–49. doi:10.1016/j.jclepro.2018.01.133.
  • Akar, S. T., T. Akar, Z. Kaynak, B. Anilan, A. Cabuk, Ö. Tabak, T. A. Demir, and T. Gedikbey. 2009. Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy 97 (1-2):98–104. doi:10.1016/j.hydromet.2009.01.009.
  • Alam, M. Z., S. A. Muyibi, and J. Toramae. 2007. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. Journal of Environmental Sciences 19 (6):674–7. doi:10.1016/S1001-0742(07)60113-2.
  • Alslaibi, T. M., I. Abustan, M. A. Ahmad, and A. A. Foul. 2013. Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. Journal of Chemical Technology & Biotechnology 88 (12):2141–51. doi:10.1002/jctb.4073.
  • APHA. 1989. Standard methods for the examination of water and wastewater, 17th ed. New York: APHA-AWWA-WPCF.
  • Arslanoğlu, H. 2017. Removal of Cu (II) from aqueous solutions by using marble waste. Pamukkale University Journal of Engineering Sciences 23 (7):877–86. doi:10.5505/pajes.2016.75688.
  • Arslanoğlu, H. 2019a. Adsorption of micronutrient metal ion onto struvite to prepare slow release multielement fertilizer: Copper (II) doped-struvite. Chemosphere 217:393–401.
  • Arslanoğlu, H. 2019b. Direct and facile synthesis of highly porous low cost carbon from potassium-rich wine stone and their application for high-performance removal. Journal of Hazardous Materials 374:238–47. doi:10.1016/j.jhazmat.2019.04.042.
  • Arslanoğlu, H., H. S. Altundogan, and F. Tumen. 2008. Preparation of cation exchanger from lemon and sorption of divalent heavy metals. Bioresource Technology 99:2699–705. doi:10.1016/j.biortech.2007.05.022.
  • Arslanoğlu, H., H. S. Altundogan, and F. Tumen. 2009. Heavy metals binding properties of esterified lemon. Journal of Hazardous Materials 164:1406–13. doi:10.1016/j.jhazmat.2008.09.054.
  • ASTM D2187-74. 1974. Standard methods of test for physical and chemical properties of particulate ion-exchange resins. Philadelphia, PA: American Society of Testing and Materials.
  • ASTM D4607-94. 2006. Standard test method for determination of iodine number of activated carbon. Philadelphia, PA: ASTM Committee on Standards, ASTM.
  • ASTM D2866-94. 2004. Standard test method for total ash content of activated carbon. West Conshohocken, PA: ASTM International.
  • Awual, M. R., M. M. Hasan, M. A. Khaleque, and M. C. Sheikh. 2016. Treatment of copper(II) containing wastewater by a newly developed ligand based facial conjugate materials. Chemical Engineering Journal 288:368–76. doi:10.1016/j.cej.2015.11.108.
  • Awual, M. R., M. Ismael, T. Yaita, S. A. El-Safty, H. Shiwaku, Y. Okamoto, and S. Suzuki. 2013. Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chemical Engineering Journal 222:67–76. doi:10.1016/j.cej.2013.02.042.
  • Aydın, H., Y. Bulut, and Ç. Yerlikaya. 2008. Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management 87 (1):37–45. doi:10.1016/j.jenvman.2007.01.005.
  • Baei, M. S., H. Esfandian, and A. A. Nesheli. 2016. Removal of nitrate from aqueous solutions in batch systems using activated perlite: An application of response surface methodology. Asia-Pacific Journal of Chemical Engineering 11 (3):437–47. doi:10.1002/apj.1965.
  • Batool, S., M. Idrees, Q. Hussain, and J. Kong. 2017. Adsorption of copper (II) by using derived-farmyard and poultry manure biochars: Efficiency and mechanism. Chemical Physics Letters 689:190–8. doi:10.1016/j.cplett.2017.10.016.
  • Bernard, E., A. Jimoh, and J. O. Odigure. 2013. Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Research Journal of Chemical Sciences 3:3–9.
  • Boehm, H. P. 2002. Surface oxides on carbon and their analysis: A critical assessment. Carbon 40 (2):145–9. doi:10.1016/S0008-6223(01)00165-8.
  • Bouhamed, F., Z. Elouear, and J. Bouzid. 2012. Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers 43 (5):741–9. doi:10.1016/j.jtice.2012.02.011.
  • Chuayjuljit, S., C. Norakankorn, and V. Pimpan. 2002. Chemical recycling of rigid polyurethane foam scrap via base catalyzed aminolysis. Journal of Minerals, Metallurgy and Materials 12:19–22.
  • Das, B. 2017. Response surface modeling of copper (II) adsorption from aqueous solution onto neem (Azadirachta indica) bark powder: Central composite design approach. Journal of Materials and Environmental Science 8:2442–54.
  • Demiral, H., and C. Güngör. 2016. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production 124:103–13. doi:10.1016/j.jclepro.2016.02.084.
  • Deng, J., Y. Liu, S. Liu, G. Zeng, X. Tan, B. Huang, X. Tang, S. Wang, Q. Hua, and Z. Yan. 2017. Competitive adsorption of Pb (II), Cd (II) and Cu (II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science 506:355–64. doi:10.1016/j.jcis.2017.07.069.
  • Ding, L., B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang, and Y. Liu. 2014. Adsorption of rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects 446:1–7. doi:10.1016/j.colsurfa.2014.01.030.
  • Dubinin, M. M., and L. V. Radushkevich. 1947. Equation of the characteristics curve of activated charcoal. ChemZent 1:875.
  • Fernandez, M. E., G. V. Nunell, P. R. Bonelli, and A. L. Cukierman. 2014. Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products 62:437–45. doi:10.1016/j.indcrop.2014.09.015.
  • Freundlich, H. M. F. 1906. Over the adsorption in solution. Journal of Physical Chemistry 57:385–470.
  • Halet, F., A. Yeddou, A. Chergui, S. Chergui, B. Nadjemi, and A. Ould-Dris. 2015. Removal of cyanide from aqueous solutions by adsorption on activated carbon prepared from lignocellulosic by-products. Journal of Dispersion Science and Technology 36 (12):1736–41. doi:10.1080/01932691.2015.1005311.
  • Hayashi, J., N. Yamamoto, T. Horikawa, K. Muroyama, and V. G. Gomes. 2005. Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane. Journal of Colloid and Interface Science 281 (2):437–43. doi:10.1016/j.jcis.2004.08.092.
  • Hwang, S., and C. L. Hansen. 1997. Modeling and optimization in anaerobic bioconversion of complex substrates to acetic and butyric acids. Biotechnology and Bioengineering 54 (5):451–60. doi:10.1002/(SICI)1097-0290(19970605)54:5<451::AID-BIT5>3.3.CO;2-5.
  • Imamoglu, M., A. Ozturk, Ş. Aydın, A. Manzak, A. Gündoğdu, and C. Duran. 2018. Adsorption of Cu(II) ions from aqueous solution by hazelnut husk activated carbon prepared with potassium acetate. Journal of Dispersion Science and Technology 39 (8):1144–8. doi:10.1080/01932691.2017.1385479.
  • Imamoglu, M., and G. Simsek. 2015. Investigation of equilibrium, kinetic and thermodynamic of methylene blue adsorption onto dehydrated hazelnut husk carbon. Desalination and Water Treatment 54:1747–53. doi:10.1080/19443994.2014.892838.
  • Isa, M. H., E. H. Ezechi, Z. Ahmed, S. F. Magram, and S. R. M. Kutty. 2014. Boron removal by electrocoagulation and recovery. Water Research 51:113–23. doi:10.1016/j.watres.2013.12.024.
  • Iwasaki, K., and Y. Oyanagi. 2003. Foundations and applications of plastic recycling. Tokyo, Japan: CMC Publishing.
  • Kanchi, S., K. Bisetty, K. Gopalakrishnan, C. Y. Lin, and T. S. Chin. 2014. Development of green energy waste activated carbon for removal of trivalent chromium: Equilibrium and kinetic modeling. Separation Science and Technology 49 (4):513–22. doi:10.1080/01496395.2013.847459.
  • Kochkodan, V., N. B. Darwish, and N. Hilal. 2015. The chemistry of boron in water. In Boron separation processes, ed. N. Kabay, M. Bryjak, and N. Hilal, 35–63. Elsevier: Amsterdam.
  • Lagergren, S. 1898. Zur theorie der sogenennten adsorption geloster stoffe. Kungliga. Svenska Vetenskademiens, Handlingar 24:1–39.
  • Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society 38 (11):2221–95. doi:10.1021/ja02268a002.
  • Li, M., Q. Liu, L. Guo, Y. Zhang, Z. Lou, Y. Wang, and G. Qian. 2013. Cu (II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresource Technology 141:83–8. doi:10.1016/j.biortech.2012.12.096.
  • Liu, H., S. Feng, N. Zhang, X. Du, and Y. Liu. 2014. Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid. Frontiers of Environmental Science & Engineering 8 (3):329–36. doi:10.1007/s11783-013-0553-9.
  • Liu, X., Z.-Q. Chen, B. Han, C.-L. Su, Q. Han, and W.-Z. Chen. 2018. Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies. Ecotoxicology and Environmental Safety 150:251–9. doi:10.1016/j.ecoenv.2017.12.042.
  • Mckay, G., and Y. S. Ho. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34:451–65. doi:10.1016/S0032-9592(98)00112-5.
  • Moradi, M., F. Ghanbari, M. Manshouri, and K. A. Angali. 2016. Photocatalytic degradation of azo dye using nano-ZrO 2/UV/persulfate: Response surface modeling and optimization. Korean Journal of Chemical Engineering 33 (2):539–46. doi:10.1007/s11814-015-0160-5.
  • Moradi, M., F. Ghanbari, and E. M. Tabrizi. 2015. Removal of acid yellow 36 using Box–Behnken designed photoelectro-Fenton: A study on removal mechanisms. Toxicological & Environmental Chemistry 97 (6):700–9. doi:10.1080/02772248.2015.1060975.
  • Orfao, J. J. M., A. I. M. Silva, J. C. V. Pereira, S. A. Barata, I. M. Fonseca, P. C. C. Faria, and M. F. R. Pereira. 2006. Adsorption of a reactive dye on chemically modified activated carbons-influence of pH. Journal of Colloid and Interface Science 296:480–9. doi:10.1016/j.jcis.2005.09.063.
  • Peng, H., P. Gao, G. Chu, B. Pan, J. Peng, and B. Xing. 2017. Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environmental Pollution 229:846–53. doi:10.1016/j.envpol.2017.07.004.
  • Periasamy, K., and C. Namasivayam. 1996. Removal of copper (II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater. Chemosphere 32 (4):769–89. doi:10.1016/0045-6535(95)00332-0.
  • Qi, C., M. Meng, Q. Liu, C. Kang, S. Huang, Z. Zhou, and C. Chen. 2015. Adsorption kinetics and thermodynamics of Auramine-O on sugarcane leaf-based activated carbon. Journal of Dispersion Science and Technology 36 (9):1257–63. doi:10.1080/01932691.2014.973036.
  • Saygılı, H., F. Güzel, and Y. Onal. 2015. Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production 93:84–93. doi:10.1016/j.jclepro.2015.01.009.
  • Thommes, M. 2010. Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik 82 (7):1059–73. doi:10.1002/cite.201000064.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9-10):1051–69. doi:10.1515/pac-2014-1117.
  • Trakal, L., R. Šigut, H. Šillerová, D. Faturíková, and M. Komárek. 2014. Copper removal from aqueous solution using biochar: Effect of chemical activation. Arabian Journal of Chemistry 7 (1):43–52. doi:10.1016/j.arabjc.2013.08.001.
  • Visa, M. 2016. Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technology 294:338–47. doi:10.1016/j.powtec.2016.02.019.
  • Warhurst, A. M., G. L. McConnachie, and S. J. Pollard. 1997. Characterisation and applications of activated carbon produced from Moringa oleifera seed husks by single-step steam pyrolysis. Water Research 31 (4):759–66. doi:10.1016/S0043-1354(97)80989-X.
  • Wasim, A. A., and M. N. Khan. 2017. Physicochemical effects of alkali treatment on acid-activated pine shell for the removal of lead ions from aqueous medium. Journal of Dispersion Science and Technology 38 (8):1092–102. doi:10.1080/01932691.2016.1225506.
  • Weber, W. J., and J. C. Morris. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division 89:31–60.
  • Yahaya, N. K. E. M., M. F. P. M. Latiff, I. Abustan, O. S. Bello, and M. A. Ahmad. 2011. Adsorptive removal of Cu (II) using activated carbon prepared from rice husk by ZnCl2 activation and subsequent gasification with CO2. International Journal of Engineering and Technology 11:164–8.
  • Yang, J., M. Yu, and W. Chen. 2015. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry 21:414–22. doi:10.1016/j.jiec.2014.02.054.
  • Yaraş, A., and H. Arslanoğlu. 2018a. Valorization of paper mill sludge as adsorbent in adsorption process of copper (II) ion from synthetic solution: Kinetic, isotherm and thermodynamic studies. Arabian Journal for Science and Engineering 43:2393–402. doi:10.1007/s13369-017-2817-3.
  • Yaraş, A., and H. Arslanoğlu. 2018b. Efficient removal of basic yellow 51 dye via carbonized paper mill sludge using sulfuric acid. Sigma: Journal of Engineering and Natural Sciences 36 (3):803–18.
  • Yaraş, A., and H. Arslanoğlu. 2019. Utilization of paper mill sludge for removal of cationic textile dyes from aqueous solutions. Separation Science and Technology 54 (16):2555–66. doi:10.1080/01496395.2018.1552295.
  • Yıldız, N., Ç. Ateş, M. Yılmaz, D. Demir, A. Yıldız, and A. Çalımlı. 2014. Investigation of lichen based green synthesis of silver nanoparticles with response surface methodology. Green Processing and Synthesis 3:259–70.
  • Yin, Z., Y. Liu, S. Liu, L. Jiang, X. Tan, G. Zeng, M. Li, S. Liu, S. Tian, and Y. Fang. 2018. Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper. Science of the Total Environment 639:1530–42. doi:10.1016/j.scitotenv.2018.05.130.
  • Zhao, B., X. Xu, F. Zeng, H. Li, and X. Chen. 2018. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu (II) adsorption kinetics. Environmental Science and Pollution Research 25 (20):19423–35. doi:10.1007/s11356-018-2079-y.
  • Zhou, L., Q. Yu, Y. Cui, F. Xie, W. Li, Y. Li, and M. Chen. 2017. Adsorption properties of activated carbon from reed with a high adsorption capacity. Ecological Engineering 102:443–50. doi:10.1016/j.ecoleng.2017.02.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.