193
Views
5
CrossRef citations to date
0
Altmetric
Chemometrics

Classification of Ceramic Tableware by Laser Induced Breakdown Spectroscopy and Chemometrics

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 1378-1390 | Received 14 Nov 2019, Accepted 18 Dec 2019, Published online: 26 Dec 2019

References

  • Albuquerque, F. R., M. G. Santos, S. J. G. Lima, M. R. Cássia-Santos, L. E. B. Soledade, A. G. Souza, and A. E. Martinelli. 2007. Planejamento experimental aplicado à otimização de massas cerâmicas contendo matérias-primas naturais. Cerâmica 53 (327):300–8. doi:10.1590/S0366-69132007000300014.
  • Askeland, D. R., P. P. Fulay, and W. J. Wright. 2010. The science and engineering of materials, 6a ed.. Boston: Cengage Learning.
  • Baracho, P. R., F. E. Claudino, C. S. Silva, G. P. Casali, V. L. Silva, E. Longo, and I. T. Weber. 2012. Análise do teor de chumbo em louças utilitárias comercializadas no Brasil. Cerâmica Industrial 17 (4):39–42. doi:10.4322/cerind.2014.023.
  • Barros Neto, B., I. S. Scarminio, and R. E. Bruns. 2006. 25 anos de quimiometria no Brasil. Química Nova 29 (6):1401–6. doi:10.1590/S0100-40422006000600042.
  • Botelho, B. G., N. Reis, L. S. Oliveira, and M. M. Sena. 2015. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chemistry 181 (1):31–7. doi:10.1016/j.foodchem.2015.02.077.
  • Bruns, R. E., and J. F. G. Faigle. 1985. Quimiometria. Química Nova 8 (2):84–99.
  • Camona, N., M. Oujja, S. Gaspard, M. García-Heras, M. A. Villegas, and M. Castillejo. 2007. Lead determination in glasses by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 62 (2):94–100. doi:10.1016/j.sab.2007.01.003.
  • Cavalcante, P. M. T., M. Dondi, G. Guarini, F. M. Barros, A. B. Luz, and J. A. Sampaio. 2006. Aplicação de pigmentos perolizados a base de mica e dióxido de titânio na cerâmica. Cerâmica Industrial 11 (2):37–41.
  • Chenoweth, J. M., and A. Farahani. 2015. Color in historical ceramic typologies: A test case in statistical analysis of replicable measurements. Journal of Archaeological Science: Reports 4 (1):310–9. doi:10.1016/j.jasrep.2015.09.015.
  • Chowdari, B.V.R., G. V. Subba Rao, and G. Y. H. Lee. 2000. XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ionics 136-137 (1-2):1067–75. doi:10.1016/S0167-2738(00)00500-2.
  • Colao, F., R. Fantoni, V. Lazic, and V. Spizzichino. 2002. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks – application on multi-layered ceramics and copper based alloys. Spectrochimica Acta Part B: Atomic Spectroscopy 57 (7):1219–34. doi:10.1016/S0584-8547(02)00054-X.
  • Cortez, J., and C. Pasquini. 2013. Ring-oven based preconcentration technique for microanalysis: Simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy. Analytical Chemistry 85 (3):1547–54. doi:10.1021/ac302755h.
  • De Maesschalck, R., D. Jouan-Rimbaud, and D. L. Massart. 2000. The mahalanobis distance. Chemometrics and Intelligent Laboratory Systems 50 (1):1–18. doi:10.1016/S0169-7439(99)00047-7.
  • Dixon, S. J., and R. G. Brereton. 2009. Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemometrics and Intelligent Laboratory Systems 95 (1):1–17. doi:10.1016/j.chemolab.2008.07.010.
  • Dondi, M. 1999. Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science 15 (3-4):337–66. doi:10.1016/S0169-1317(99)00027-7.
  • Du, J., B. Jones, and M. Lanagan. 2005. Preparation and characterization of dielectric glass-ceramics in Na2O–PbO–Nb2O5–SiO2 system. Materials Letters 59 (22):2821–6. doi:10.1016/j.matlet.2005.02.090.
  • Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, 2a ed. New York: John Wiley.
  • Dutra, R. P. S., P. A. S. Araújo, R. M. P. R. Macedo, R. M. Nascimento, U. U. Gomes, A. E. Martinelli, and C. A. Paskocimas. 2006. Desenvolvimento de formulações de massas para a indústria de cerâmica vermelha do Rio Grande do Norte. Cerâmica Industrial 11 (3):41–6.
  • European Community Directive 657. 2002. Comission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal, Brussels, L 221:8–36.
  • Feltrin, J., M. N. Sartor, A. Noni, Jr., A. M. Bernardin, D. Hotza, and J. A. Labrincha. 2013. Superfícies fotocatalíticas de titânia em substratos cerâmicos. Parte I: Síntese, estrutura e fotoatividade. Cerâmica 59 (352):620–32. doi:10.1590/S0366-69132013000400020.
  • Ferreira, M. M. C., A. C. Antunes, M. S. Melgo, and P. L. O. Volpe. 1999. Quimiometria I: Calibração multivariada um tutorial. Química Nova 22 (5):724–31. doi:10.1590/S0100-40421999000500016.
  • Gazulla, M. F., M. P. Gomez, A. Barba, and M. Orduña. 2004. Chemical characterisation of geological raw materials used in traditional ceramics. Geostandards and Geoanalytical Research 28 (2):203–12. doi:10.1111/j.1751-908X.2004.tb00737.x.
  • Gomes, C. M., J. P. Reis, J. F. Luiz, A. P. N. Oliveira, and D. Hotza. 2005. Defloculação de massas cerâmicas triaxiais obtidas a partir do delineamento de misturas. Cerâmica 51 (320):336–42. doi:10.1590/S0366-69132005000400006.
  • Günther, D., and B. Hattendorf. 2005. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TRAC Trends in Analytical Chemistry 24 (3):255–65. doi:10.1016/j.trac.2004.11.017.
  • Huang, Y., and Y. Guan. 2015. On the linear discriminant analysis for large number of classes. Engineering Applications of Artificial Intelligence 43 (1):15–26. doi:10.1016/j.engappai.2015.03.006.
  • Kanda, Y., C. Temma, K. Nakata, T. Kobayashi, M. Sugioka, and Y. Uemichi. 2010. Preparation and performance of noble metal phosphides supported on silica as new hydrodesulfurization catalysts. Applied Catalysis A: General 386 (1-2):171–8. doi:10.1016/j.apcata.2010.07.045.
  • Kayal, N., and N. Singh. 2007. Stepwise complexometric determination of aluminium, titanium and iron concentrations in silica sand and allied materials. Chemistry Central Journal 24 (1):1–5. doi:10.1186/1752-153X-1-24.
  • Kazuya, M., M. Murakami, and N. Maruyama. 2003. Quantitative analysis of ceramics by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (5):957–65. doi:10.1016/S0584-8547(03)00011-9.
  • Kennard, R. W., and L. A. Stone. 1969. Computer aided design of experiments. Technometrics 11 (1):137–48. doi:10.1080/00401706.1969.10490666.
  • Kolar, D. 2000. Chemical research needed to improve high-temperature processing of advanced ceramic materials. Pure and Applied Chemistry 72 (8):1425–48. doi:10.1351/pac200072081425.
  • Lavine, B. K. 1998. Chemometrics. Analytical Chemistry 70 (12):209–28. doi:10.1021/a19800085.
  • Legnaioli, S., F. A. Garcia, A. Andreotti, E. Bramanti, D. D. Pace, S. Formola, G. Lorenzetti, M. Martini, L. Pardini, E. Ribechini, et al. 2013. Multi-technique study of a ceramic archaeological artifact and its content. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 100 (1):144–8. doi:10.1016/j.saa.2012.04.009.
  • Link, M., S. R. Bragança, and C. P. Bergmann. 2013. Influência da razão SiO2/Na2O do silicato de sódio na defloculação de suspensões aquosas empregadas na conformação por colagem de barbotinas. Cerâmica Industrial 18 (1):25–8. doi:10.4322/cerind.2014.033.
  • López, A. J., G. Nicolás, M. P. Mateo, V. Piñón, A. Ramil, and A. Yáñez. 2005. Análisis de cerâmicas romanas Terra Sigillata mediante espectroscopia de plasmas inducidos por laser (LIPS). Boletín de la Sociedad Española de Cerámica y Vidrio 44 (6):373–8. doi:10.3989/cyv.2005.v44.i6.331.
  • Manfredini, T., and M. Hanuskova. 2012. Natural raw materials in “traditional” ceramic manufacturing. Journal of the University of Chemical Technology and Metallurgy 47 (4):465–70.
  • Marino, L. F. B., and A. O. Boschi. 2000. A Expansão Térmica dos Revestimentos Cerâmicos. Parte IV: Efeitos da Adição de Dolomita. Cerâmica Industrial 5 (1):43–7.
  • Melessanaki, K., M. Mateo, S. C. Ferrence, P. P. Betancourt, and D. Anglos. 2002. The application of LIBS for the analysis of archeological ceramic and metal artifacts. Applied Surface Science 197–198 (1):156–63. doi:10.1016/S0169-4332(02)00459-2.
  • Michel, A. P. M. 2010. Review: Applications of single-shot laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 65 (3):185–91. doi:10.1016/j.sab.2010.01.006.
  • Omolaoye, J. A., A. Uzairu, and C. E. Gimba. 2010. Heavy metal assessment of some ceramic products imported into Nigeria from China. Archives of Applied Science Research 2 (5):120–5.
  • Oreste, E. Q., A. O. de Souza, C. C. Pereira, M. A. Vieira, and A. S. Ribeiro. 2017. Decomposição ácida assistida por ultrassom para a determinação de Cu, Fe, Mg e Zn por F AAS em cerâmicas de uso doméstico. Química Nova 40 (3):310–6. doi:10.21577/0100-4042.20170013.
  • Padilla, R., P. Van Espen, and P. P. G. Torres. 2006. The suitability of XRF analysis for compositional classification of archaeological ceramic fabric: A comparison with a previous NAA study. Analytica Chimica Acta 558 (1-2):283–9. doi:10.1016/j.aca.2005.10.077.
  • Papachristodoulou, C., A. Oikonomou, K. Ioannides, and K. A. Gravani. 2006. Study of ancient pottery by means of X-ray fluorescence spectroscopy, multivariate statistics and mineralogical analysis. Analytica Chimica Acta 573-574 (1):347–53. doi:10.1016/j.aca.2006.02.012.
  • Papadopoulou, D. N., G. A. Zachariadis, A. N. Anthemidis, N. C. Tsirliganis, and J. A. Stratis. 2006. Development and optimisation of a portable micro-XRF method for in situ multi-element analysis of ancient ceramics. Talanta 68 (5):1692–9. doi:10.1016/j.talanta.2005.08.051.
  • Pasquini, C., J. Cortez, L. M. C. Silva, and F. B. Gonzaga. 2007. Laser induced breakdown spectroscopy. Journal of the Brazilian Chemical Society 18 (3):463–512. doi:10.1590/S0103-50532007000300002.
  • Pires, C. T. G. V. M. T., N. G. Oliveira, Jr., and C. Airoldi. 2012. Structural incorporation of titanium and/or aluminum in layered silicate magadiite through direct syntheses. Materials Chemistry and Physics 135 (2-3):870–9. doi:10.1016/j.matchemphys.2012.05.072.
  • Pontes, M. J. C., J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. Abreu, and B. E. Madari. 2009. Classification of brazilian soils by using LIBS and variable selection in the wavelet domain. Analytica Chimica Acta 642 (1-2):12–8. doi:10.1016/j.aca.2009.03.001.
  • Ramil, A., A. J. López, and A. Yáñez. 2008. Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS). Applied Physics A 92 (1):197–202. doi:10.1007/s00339-008-4481-7.
  • Ruiz, M. S., L. C. Tanno, M. Cabral, Jr., J. M. Coelho, and J. C. Niedzielski. 2011. A indústria de louça e porcelana de mesa no Brasil. Cerâmica Industrial 16 (2):29–34. doi:10.4322/cerind.2014.005.
  • Sadek, H., M. Simileanu, R. Radvan, and R. Goumaa. 2012. Identification of porcelain pigments by laser induced breakdown spectroscopy. Journal of Optoelectronics and Advanced Materials 14 (9-10):858–62.
  • Sánchez-Muñoz, L., S. S. Cava, C. A. Paskocimas, E. Cerisuelo, E. Longo, and J. B. Carda. 2002. Seleção de matérias-primas no desenvolvimento de formulações de massas cerâmicas. Cerâmica 48 (306):108–13. doi:10.1590/S0366-69132002000200010.
  • Santos, L. R., F. G. Melchiades, E. Biscaro, A. Ferrari, and A. O. Boschi. 2010. Avaliação de Caulim Sedimentar do Estado do Pará como Matéria‐Prima para o Setor Cerâmico. Parte I. Caracterização Físico-Química. Cerâmica Industrial 15 (5-6):19–24.
  • Schenk, E. R., and J. R. Almirall. 2012. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES). Forensic Science International 217 (1-3):222–8. doi:10.1016/j.forsciint.2011.11.009.
  • Schuller, D., E. C. Bianchi, and P. R. Aguiar. 2008. Influência de defeitos e diferentes processos de fabricação nas propriedades mecânicas finais de cerâmicas. Cerâmica 54 (332):435–42. doi:10.1590/S0366-69132008000400008.
  • Snee, R. D. 1977. Validation of regression models: Methods and examples. Technometrics 19 (4):415–28. doi:10.1080/00401706.1977.10489581.
  • Soares, R. A. L., R. M. Nascimento, C. A. Paskocimas, and R. J. S. Castro. 2014. Avaliação da adição de dolomita em massa de cerâmica de revestimento de queima vermelha. Cerâmica 60 (356):516–23. doi:10.1590/S0366-69132014000400009.
  • Syta, O., B. Wagner, E. Bulska, D. Zielińska, G. Z. Żukowska, J. Gonzalez, and R. Russo. 2018. Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry measurements. Talanta 179 (1):784–91. doi:10.1016/j.talanta.2017.12.011.
  • Vítková, G., K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka. 2012. Fast identification of biominerals by means of stand-off laser‐induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks. Spectrochimica Acta Part B: Atomic Spectroscopy 73 (1):1–6. doi:10.1016/j.sab.2012.05.010.
  • Vítková, G., L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, and J. Kaiser. 2014. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 101 (1):191–9. doi:10.1016/j.sab.2014.08.036.
  • Wold, S. 1976. Pattern recognition by means of disjoint principal components models. Pattern Recognition 8 (3):127–39. doi:10.1016/0031-3203(76)90014-5.
  • Wold, S., and M. Sjöström. 1998. Chemometrics, present and future success. Chemometrics and Intelligent Laboratory Systems 44 (1-2):3–14. doi:10.1016/S0169-7439(98)00075-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.