209
Views
7
CrossRef citations to date
0
Altmetric
Electrochemistry

Sensitive Photoelectrochemical Determination of Ciprofloxacin Using an Indium Tin Oxide Photoelectrode Modified with Small Gold Nanoparticles

, , , , &
Pages 1472-1488 | Received 27 Jul 2019, Accepted 23 Dec 2019, Published online: 03 Jan 2020

References

  • Bagheri, H., H. Khoshsafar, S. Amidi, and Y. Hosseinzadeh Ardakani. 2016. Fabrication of an electrochemical sensor based on magnetic multi-walled carbon nanotubes for the determination of ciprofloxacin. Analytical Methods 8 (16):3383–90. doi:10.1039/C5AY03410H.
  • Cai, T., Y. Gao, J. Yan, Y. Wu, and J. Di. 2017. Visual detection of glucose using triangular silver nanoplates and gold nanoparticles. RSC Advances 7 (46):29122–8. doi:10.1039/C7RA00593H.
  • Cao, L., P. Wang, L. Chen, Y. Wu, and J. Di. 2019. A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase. RSC Advances 9 (27):15307–13. doi:10.1039/C9RA02088H.
  • Cazedey, E. C., and H. R. Salgado. 2011. Development and validation of a microbiological agar assay for determination of orbifloxacin in pharmaceutical preparations. Pharmaceutics 3 (3):572–81. doi:10.3390/pharmaceutics3030572.
  • Cazedey, E. C. L., and H. R. N. Salgado. 2013. A novel and rapid microbiological assay for ciprofloxacin hydrochloride. Journal of Pharmaceutical Analysis 3 (5):382–6. doi:10.1016/j.jpha.2013.03.007.
  • Ding, L., Y. Gao, and J. Di. 2016. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate. Biosensors and Bioelectronics 83:9–14. doi:10.1016/j.bios.2016.04.002.
  • Escribano, E., A. C. Calpena, T. M. Garrigues, J. Freixas, J. Domenech, and J. Moreno. 1997. Structure-absorption relationships of a series f 6-Fluoroquinolones. Antimicrobial Agents and Chemotherapy 41 (9):1996–2000. doi:10.1128/AAC.41.9.1996.
  • Fotouhi, L., and M. Alahyari. 2010. Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids and Surfaces B: Biointerfaces 81 (1):110–4. doi:10.1016/j.colsurfb.2010.06.030.
  • Frens, G. 1973. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science 241 (105):20–2. doi:10.1038/physci241020a0.
  • Gao, B., X. P. He, Y. Jiang, J. T. Wei, H. Suo, and C. Zhao. 2014. Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing. Journal of Separation Science 37 (24):3753–9. doi:10.1002/jssc.201401014.
  • Gayen, P., and B. P. Chaplin. 2016. Selective electrochemical detection of ciprofloxacin with a porous nafion/multiwalled carbon nanotube composite film electrode. ACS Applied Materials & Interfaces 8 (3):1615–26. doi:10.1021/acsami.5b07337.
  • Govorov, A. O., Z. Hui, and Y. K. Gun’Ko. 2013. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. The Journal of Physical Chemistry C 117:16616–31. doi: 10.1021/jp405430m.
  • Govorov, A. O., H. Zhang, H. V. Demir, and Y. K. Gun’Ko. 2014. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 9 (1):85–101. doi:10.1016/j.nantod.2014.02.006.
  • Imre, S., M. T. Dogaru, C. E. Vari, T. Muntean, and L. Kelemen. 2003. Validation of an HPLC method for the determination of ciprofloxacin in human plasma. Journal of Pharmaceutical and Biomedical Analysis 33 (1):125–30. doi:10.1016/S0731-7085(03)00151-1.
  • Kang, Z., X. Yan, Y. Wang, Y. Zhao, Z. Bai, Y. Liu, K. Zhao, S. Cao, and Y. Zhang. 2016. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Research 9 (2):344–52. doi:10.1007/s12274-015-0913-9.
  • Laurynas, R., N. Gediminas, E. L. Olegas, and B. Eugenijus. 2006. A study of cysteamine ionization in solution by Raman spectroscopy and theoretical modeling. Journal of Physical Chemistry A 110:13394–404. doi:10.1021/jp063816g.
  • Li, D., Z. Y. Yan, and W. Q. Cheng. 2008. Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 71 (4):1204–11. doi:10.1016/j.saa.2008.03.024.
  • Li, H., W. Xu, Y. Qu, M. Wang, G. Liu, and G. Qiao. 2019. Enhanced photoelectrochemical performance of In2O3 nanocubes with oxygen vacancies via hydrogenation. Inorganic Chemistry Communications 102:70–4. doi:10.1016/j.inoche.2019.02.010.
  • Liao, X., J. Chen, M. Wang, Z. Liu, L. Ding, and Y. Li. 2016. Enhanced photocatalytic and photoelectrochemical activities of SnO2/SiC nanowire heterostructure photocatalysts. Journal of Alloys and Compounds 658:642–8. doi:10.1016/j.jallcom.2015.10.269.
  • Liu, X., T. Wang, Y. Lu, W. Wang, Z. Zhou, and Y. Yan. 2019. Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin. Sensors and Actuators B: Chemical 289:242–51. doi:10.1016/j.snb.2019.03.094.
  • Liu, B., Y. Huang, Q. Shen, X. Zhu, Y. Hao, P. Qu, and M. Xu. 2016. Turn-on fluorescence detection of ciprofloxacin in tablets based on lanthanide coordination polymer nanoparticles. RSC Advances 6 (103):100743–7. doi:10.1039/C6RA20357D.
  • Madrakian, T., S. Maleki, and A. Afkhami. 2017. Surface decoration of cadmium-sulfide quantum dots with 3-mercaptopropionic acid as a fluorescence probe for determination of ciprofloxacin in real samples. Sensors and Actuators B: Chemical 243:14–21. doi:10.1016/j.snb.2016.11.106.
  • Okan, M., E. Sari, and M. Duman. 2017. Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosensors and Bioelectronics 88:258–64. 08.047. doi:10.1016/j.bios.2016.
  • Pawar, R. C., Y. Pyo, S. H. Ahn, and C. S. Lee. 2015. Photoelectrochemical properties and photodegradation of organic pollutants using hematite hybrids modified by gold nanoparticles and graphitic carbon nitride. Applied Catalysis B: Environmental 176-177:654–66. doi:10.1016/j.apcatb.2015.04.045.
  • Peng, J., Q. Huang, W. Zhuge, Y. Liu, C. Zhang, W. Yang, and G. Xiang. 2018. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosensors and Bioelectronics 106:212–8. doi:10.1016/j.bios.2018.02.009.
  • Peng, J., Q. Huang, Y. Liu, P. Liu, and C. Zhang. 2019. Photoelectrochemical sensor based on composite of CdTe and nickel tetraamined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin. Sensors and Actuators B: Chemical 294:157–65. doi:10.1016/j.snb.2019.05.047.
  • Pham, T. S. H., P. J. Mahon, G. Lai, and A. Yu. 2018. Reduced graphene oxide nanocomposite modified electrodes for sensitive detection of ciprofloxacin. Electroanalysis 30 (9):2185–94. doi:10.1002/elan.201700738.
  • Piella, J., N. G. Bastús, and V. Puntes. 2016. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chemistry of Materials 28 (4):1066–75. doi:10.1021/acs.chemmater.5b04406.
  • Shan, J., R. Li, K. Yan, Y. Zhu, and J. Zhang. 2016. In situ anodic stripping of Cd(II) from CdS quantum dots for electrochemical sensing of ciprofloxacin. Sensors and Actuators B: Chemical 237:75–80. doi:10.1016/j.snb.2016.06.066.
  • Sowinski, K. M., and M. B. Kays. 2004. Determination of ciprofloxacin concentrations in human serum and urine by HPLC with ultraviolet and fluorescence detection. Journal of Clinical Pharmacy and Therapeutics 29 (4):381–7. doi:10.1111/j.1365-2710.2004.00575.x.
  • Tang, J., Y. Wang, J. Li, P. Da, J. Geng, and G. Zheng. 2014. Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. Journal of Materials Chemistry A 2 (17):6153–7. doi:10.1039/C3TA14173J.
  • Tom, R. T., V. Suryanarayanan, P. G. Reddy, S. Baskaran, and T. Pradeep. 2004. Ciprofloxacin-protected gold nanoparticles. Langmuir 20 (5):1909–14. doi:10.1021/la0358567.
  • Torriero, A. A., J. J. Ruiz-Diaz, E. Salinas, E. J. Marchevsky, M. I. Sanz, and J. Raba. 2006. Enzymatic rotating biosensor for ciprofloxacin determination. Talanta 69 (3):691–9. doi:10.1016/j.talanta.2005.11.005.
  • Torriero, A. A., E. Salinas, J. Raba, and J. J. Silber. 2006. Sensitive determination of ciprofloxacin and norfloxacin in biological fluids using an enzymatic rotating biosensor. Biosensors and Bioelectronics 22 (1):109–15. doi:10.1016/j.bios.2005.12.004.
  • Vella, J., F. Busuttil, N. S. Bartolo, C. Sammut, V. Ferrito, A. Serracino-Inglott, L. M. Azzopardi, and G. LaFerla. 2015. A simple HPLC–UV method for the determination of ciprofloxacin inhuman plasma. Journal of Chromatography B 989:80–5. doi:10.1016/j.jchromb.2015.01.006.
  • Wang, W., L. Bao, J. Lei, W. Tu, and H. Ju. 2012. Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots. Analytica Chimica Acta 744:33–8. doi:10.1016/j.aca.2012.07.025.
  • Wang, J., J. Dai, M. Meng, Z. Song, J. Pan, Y. Yan, and C. Li. 2014. Surface molecularly imprinted polymers based on yeast prepared by atom transfer radical emulsion polymerization for selective recognition of ciprofloxacin from aqueous medium. Journal of Applied Polymer Science 131:40310. doi:10.1002/app.40310.
  • Wang, S., Y. Gao, M. Shu, T. Liu, L. Mu, R. Li, F. Fan, and C. Li. 2017. Positioning the water oxidation reaction sites in plasmonic photocatalysts. Journal of the American Chemical Society 139 (34):11771–8. doi:10.1021/jacs.7b04470.
  • Wang, P., D. Huang, W. Guo, and J. Di. 2018. Photoelectrochemical sensing for hydroquinone based on gold nanoparticle-modified indium tin oxide glass electrode. Journal of Solid State Electrochemistry 22 (1):123–8. doi:10.1007/s10008-017-3730-0.
  • Wu, N. 2018. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 10 (6):2679–96. doi:10.1039/C7NR08487K.
  • Xu, L., H. Li, P. Yan, J. Xia, J. Qiu, Q. Xu, S. Zhang, H. Li, and S. Yuan. 2016. Graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin. Journal of Colloid and Interface Science 483:241–8. doi:10.1016/j.jcis.2016.08.015.
  • Xu, L., P. Yan, H. Li, S. Ling, J. Xia, J. Qiu, Q. Xu, H. Li, and S. Yuan. 2017. Metallic Bi self-doping BiOCl composites: Synthesis and enhanced photoelectrochemical performance. Materials Letters 196 (2017):225–9. doi:10.1016/j.matlet.2017.03.008.
  • Yan, P., L. Xu, D. Jiang, H. Li, J. Xia, Q. Zhang, M. Hua, and H. Li. 2018. Photoelectrochemical monitoring of ciprofloxacin based on metallic Bi elf-doping BiOBr nanocomposites. Electrochimica Acta 259:873–81. doi:10.1016/j.electacta.2017.11.026.
  • Yang, H., J. Tian, Y. Bo, Y. Zhou, X. Wang, and H. Cui. 2017. Visible photocatalytic and photoelectrochemical activities of TiO2 nanobelts modified by In2O3 nanoparticles. Journal of Colloid and Interface Science 487:258–65. doi:10.1016/j.jcis.2016.10.051.
  • Yang, T., and T. Tetsu. 2005. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society 127:7632–7. doi:10.1021/ja042192u.
  • Zhang, X., Y. Wei, and Y. Ding. 2014. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Analytica Chimica Acta 835:29–36. doi:10.1016/j.aca.2014.05.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.