186
Views
3
CrossRef citations to date
0
Altmetric
Sensors

Novel Iron(III)−Induced Prooxidant Activity Measurement Using a Solid Protein Sensor in Comparison with a Copper(II)−Induced Assay

, , &
Pages 1489-1503 | Received 28 Nov 2019, Accepted 25 Dec 2019, Published online: 08 Jan 2020

References

  • Akyüz, E., K. S. Başkan, E. Tütem, and R. Apak. 2017. Novel protein − based solid − biosensor for determining pro − oxidant activity of phenolic compounds. Journal of Agricultural and Food Chemistry 65 (28):5821–30. doi:10.1021/acs.jafc.7b01649.
  • Apak, R., K. Güçlü, M. Özyürek, and S. E. Karademir. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 52 (26):7970–81. − doi:10.1021/jf048741x.
  • Atoui, A. K., A. Mansouri, G. Boskou, and P. Kefalas. 2005. Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chemistry 89 (1):27–36. doi:10.1016/j.foodchem.2004.01.075.
  • Azam, S., N. Hadi, N. U. Khan, and S. M. Hadi. 2004. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin−3 − gallate: Implications for anticancer properties. Toxicology in Vitro 18 (5):555–61. doi:10.1016/j.tiv.2003.12.012.
  • Berker, K. I., K. Güçlü, B. Demirata, and R. Apak. 2010. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Analytical Methods 2 (11):1770–8. doi:10.1039/c0ay00245c.
  • Berlett, B. S., and E. R. Stadtman. 1997. Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry 272 (33):20313–6. doi:10.1074/jbc.272.33.20313.
  • Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal 5 (1):9–19. doi:10.1097/WOX.0b013e3182439613.
  • Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany 91 (2):179–94. doi:10.1093/aob/mcf118.
  • Brewer, G. J. 2010. Risks of copper and iron toxicity during aging in humans. Chemical Research in Toxicology 23 (2):319–26. doi:10.1021/tx900338d.
  • Cao, G., E. Sofic, and R. L. Prior. 1997. Antioxidant and prooxidant behavior of flavonoids: Structure − activity relationships. Free Radical Biology and Medicine 22 (5):749–60. doi:10.1016/S0891-5849(96)00351-6.
  • Chung, J. E., M. Kurisawa, Y.-J. Kim, H. Uyama, and S. Kobayashi. 2004. Amplification of antioxidant activity of catechin by polycondensation with acetaldehyde. Biomacromolecules 5 (1):113–8. doi:10.1021/bm0342436.
  • Darley-Usmar, V., and B. Halliwell. 1996. Blood radicals: Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharmaceutical Research 13 (5):649–62. doi:10.1023/A:1016079012214.
  • Dhara, S. 2005. Synthesis of nanocrystalline alumina using egg white. Journal of the American Ceramic Society 88 (7):2003–4. doi:10.1111/j.1551-2916.2005.00382.x.
  • Duarte, T. L., and J. Lunec. 2005. Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radical Research 39 (7):671–86. doi:10.1080/10715760500104025.
  • Eghbaliferiz, S., and M. Iranshahi. 2016. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytotherapy Research 30 (9):1379–91. doi:10.1002/ptr.5643.
  • Exley, C. 2004. The pro − oxidant activity of aluminum. Free Radical Biology and Medicine 36 (3):380–7. doi:10.1016/j.freeradbiomed.2003.11.017.
  • Halliwell, B., and J. M. C. Gutteridge. 1981. Formation of a thiobarbituric – acid − reactive substance from deoxyribose in the presence of iron salts. Febs Letters 128 (2):347–52. doi:10.1016/0014-5793(81)80114-7.
  • Hawkins, C. L., P. E. Morgan, and M. J. Davies. 2009. Quantification of protein modification by oxidants. Free Radical Biology and Medicine 46:965–88. doi:10.1016/j.freeradbiomed.2009.01.007.
  • Hou, X., W. Shen, X. Huang, Z. Ai, and L. Zhang. 2016. Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B. Journal of Hazardous Materials 308:67–74. doi:10.1016/j.jhazmat.2016.01.031.
  • Hsieh, Y.-H. P., and Y. P. Hsieh. 1997. Valence state of iron in the presence of ascorbic acid and ethylenediaminetetraacetic acid. Journal of Agricultural and Food Chemistry 45 (4):1126–9. doi:10.1021/jf960684n.
  • Hsieh, Y.-H. P., and Y. P. Hsieh. 2000. Kinetics of Fe(III) reduction by ascorbic acid in aqueous solutions. Journal of Agricultural and Food Chemistry 48 (5):1569–73. doi:10.1021/jf9904362.
  • Ilari, A., S. Stefanini, E. Chiancone, and D. Tsernoglou. 2000. The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nature Structural Biology 7 (1):38–43. doi:10.1038/71236.
  • Kaliora, A. C., D. A. A. Kogiannou, P. Kefalas, I. S. Papassideri, and N. Kalogeropoulos. 2014. Phenolic profiles and antioxidant and anticarcinogenic activities of Greek herbal infusions; balancing delight and chemoprevention?. Food Chemistry 142:233–41. doi:10.1016/j.foodchem.2013.07.056.
  • Keypour, H., J. Silver, M. T. Wilson, and M. Y. Hamed. 1986. Studies on the reactions of ferric iron with ascorbic acid. A study of solution chemistry using mössbauer spectroscopy and stopped − flow techniques. Inorganica Chimica Acta 125 (2):97–106. doi:10.1016/S0020-1693(00)82094-0.
  • Khan, M. M. T., and A. E. Martell. 1967. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. Journal of the American Chemical Society 89 (16):4176–85. doi:10.1016/S0020-1693(00)82094-0.
  • Kondakçı, E., M. Özyürek, K. Güçlü, and R. Apak. 2013. Novel pro − oxidant activity assay for polyphenols, vitamins C and E using a modified Cu(II)−Nc assay method. Talanta 115:583–9. doi:10.1016/j.talanta.2013.06.006.
  • Letelier, M. E., S. Sanchez-Jofre, L. Peredo−Silva, J. Cortés−Troncoso, and P. Aracena −Parks. 2010. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro − oxidant activity and protein − binding effects. Chemico-Biological Interactions 188 (1):220–7. doi:10.1016/j.cbi.2010.06.013.
  • Levine, R. L., J. A. Williams, E. R. Stadtman, and E. Shacter. 1994. Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology 233:346–57. doi:10.1016/S0076-6879(94)33040-9.
  • Magnani, L., E. M. Gaydou, and J. C. Hubaud. 2000. Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion. Analytica Chimica Acta 411 (1-2):209–16. doi:10.1016/S0003-2670(00)00717-0.
  • Mira, L., M. T. Fernandez, M. Santos, R. Rocha, M. H. Florêncio, and K. R. Jennings. 2002. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research 36 (11):1199–208. doi:10.1080/1071576021000016463.
  • Moran, J. F., R. V. Klucas, R. J. Grayer, J. Abian, and M. Becana. 1997. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: Prooxidant and antioxidant properties. Free Radical Biology and Medicine 22 (5):861–70. doi:10.1016/S0891-5849(96)00426-1.
  • Pearson, R. G. 1963. Physical and inorganic chemistry. Journal of the American Chemical Society 85 (22):3533–9. doi:10.1021/ie50494a016.
  • Pękal, A., and K. Pyrzynska. 2014. Evaluation of aluminum complexation reaction for flavonoid content assay. Food Analytical Methods 7 (9):1776–82. doi:10.1007/s12161-014-9814-x.
  • Pȩkal, A., P. Dróżdż, M. Biesaga, and K. Pyrzynska. 2012. Screening of the antioxidant properties and polyphenol composition of aromatised green tea infusions. Journal of the Science of Food and Agriculture 92 (11):2244–9. doi:10.1002/jsfa.5611.
  • Perron, N. R., and J. L. Brumaghim. 2009. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics 53 (2):75–100. doi:10.1007/s12013-009-9043-x.
  • Stadtman, E. R. 1990. Metal ion − catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radical Biology and Medicine 9 (4):315–25. doi:10.1016/0891-5849(90)90006-5.
  • Stumm, W., and B. Sulzberger. 1992. The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes. Geochimica et Cosmochimica Acta 56 (8):3233–57. doi:10.1016/0016-7037(92)90301-X.
  • Tian, B., Z. Sun, Z. Xu, and Y. Hua. 2017. Chemiluminescence analysis of the prooxidant and antioxidant effects of epigallocatechin − 3 − gallate. Asia Pacific Journal of Clinical Nutrition 16:153–7.
  • Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress − induced cancer. Chemico-Biological Interactions 160 (1):1–40. doi:10.1016/j.cbi.2005.12.009.
  • Verdan, A. M., H. C. Wang, C. R. García, W. P. Henry, and J. L. Brumaghim. 2011. Iron binding of 3 − hydroxychromone, 5 − hydroxychromone, and sulfonated morin: Implications for the antioxidant activity of flavonols with competing metal binding sites. Journal of Inorganic Biochemistry 105 (10):1314–22. doi:10.1016/j.jinorgbio.2011.07.006.
  • Videla, L. A., V. Fernández, G. Tapia, and P. Varela. 2003. Oxidative stress-mediated hepatotoxicity of iron and copper: Role of Kupffer cells. BioMetals 16 (1):103–11.
  • Yi, Z. C., Y. Z. Liu, H. X. Li, and Z. Wang. 2009. Prooxidant action of chebulinic acid and tellimagrandin I: Causing copper − dependent DNA strand breaks. Toxicology in Vitro 23 (3):425–31. doi:10.1016/j.tiv.2009.01.012.
  • Zheng, L. F., F. Dai, B. Zhou, L. Yang, and Z. L. Liu. 2008. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure − activity relationship. Food and Chemical Toxicology 46 (1):149–56. doi:10.1016/j.fct.2007.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.