396
Views
2
CrossRef citations to date
0
Altmetric
Review

Nanodevices for Pharmaceutical and Biomedical Applications

, , &
Pages 98-123 | Received 06 Feb 2020, Accepted 07 Feb 2020, Published online: 19 Feb 2020

References

  • Abdelmohsen, L. K. E. A., F. Peng, Y. Tu, and D. A. Wilson. 2014. Micro- and nano-motors for biomedical applications. Journal of Materials Chemistry B. 2 (17):2395–408. doi:10.1039/C3TB21451F.
  • Balasubramanian, S., D. Kagan, C-M J. Hu, S. Campuzano, M. J. Lobo-Castañon, N. Lim, D. Y. Kang, M. Zimmerman, L. Zhang, and J. Wang. 2011. Micromachine enabeled capture and isolation of cancer cells in complex media. Angewandte Chemie International Edition 50 (18):4161–4. doi:10.1002/anie.201100115.
  • Betal, S., A. K. Saha, E. Ortega, M. Dutta, A. Kumar, A. S. Bhalla, and R. Guo. 2018. Core-shell magnetoelectric nanorobot – a remotely controlled probe for targeted cell manipulation. Scientific Reports 8 (1):1755–63. doi:10.1038/s41598-018-20191-w.
  • Bouffier, L., D. Zigah, C. Adam, M. Sentic, Z. Fattah, D. Manojlovic, A. Kuhn, and N. Sojic. 2014. Lighting up redox propulsion with luminol electrogenerated chemiluminescence. ChemElectroChem 1 (1):95–8. doi:10.1002/celc.201300042.
  • Campuzano, S., J. Orozco, D. Kagan, M. Guix, W. Gao, S. Sattayasamitsathit, J. C. Claussen, A. Merkoçi, and J. Wang. 2012. Bacterial isolation by lectin-modified microengines. Nano Letters 12 (1):396–401. doi:10.1021/nl203717q.
  • Chen, C., F. Mou, L. Xu, S. Wang, J. Guan, Z. Feng, Q. Wang, L. Kong, W. Li, J. Wang, et al. 2017. Light-steered isotropic semiconductor micromotors. Advanced Materials 29 (3):1603374. doi:10.1002/adma.201603374.
  • Chen, C., X. Chang, P. Angsantikul, J. Li, B. Esteban-Fernández De Ávila, E. Karshalev, and W. Liu. 2017. Chemotactic guidance of synthetic organic/inorganic payloads functionalized sperm micromotors. Advanced Biosystems 2:1–7 1700160. doi:10.1002/adbi.201700160.
  • Chen, X.-Z., M. Hoop, N. Shamsudhin, T. Huang, B. Özkale, Q. Li, E. Siringil, F. Mushtaq, L. D. Tizio, B. J. Nelson, et al. 2017. Hybrid magnetoelectric nanowires for nanorobotic applications : fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Advanced Materials 29:1–7 (1605458. doi:10.1002/adma.201605458.
  • Dai, B., J. Wang, Z. Xiong, X. Zhan, W. Dai, C.-C. Li, S.-P. Feng, and J. Tang. 2016. Programmable artificial phototactic microswimmer. Nature Nanotechnology 11 (12):1087–92. doi:10.1038/nnano.2016.187.
  • Escarpa, A., and J. Wang. 2015. Lighting up micromotors with quantum dots for smart chemical sensing. Chemical Communications 51:14088–1409. doi:10.1039/C5CC04726A.
  • Esteban-Fernández de Ávila, B., A. Martín, F. Soto, M. A. Lopez-Ramirez, S. Campuzano, G. M. Vásquez-Machadom, W. Gao, L. Zhang, and J. Wang. 2015. Single cell real-time MiRNAs sensing based on nanomotors. ACS Nano. 9 (7):6756–64. doi:10.1021/acsnano.5b02807.
  • Esteban-Fernández de Ávila, B., C. Angell, F. Soto, M. A. Lopez-Ramirez, D. F. Baez, S. Xie, J. Wang, and Y. Chen. 2016. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 10 (5):4997–5005. doi:10.1021/acsnano.6b01415.
  • Fisher, A. C., and M. Pumera. 2019. Recoverable bismuth-based microrobots: Capture, transport, and on-demand release of heavy metals and an anticancer drug in con Fi Ned spaces. ACS Applied Materials & Interfaces 11:13359–69. doi:10.1021/acsami.8b19408.
  • Gao, W., R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, and J. Wang. 2015. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors. ACS Nano. 9 (1):117–23. doi:10.1021/nn507097k.
  • Gao, W., B. Esteban-Fernandez De Avila, L. Zhang, and J. Wang. 2018. Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews 125:94–101. doi:10.1016/j.addr.2017.09.002.
  • Garcia-Gradilla, V., S. Sattayasamitsathit, F. Soto, F. Kuralay, C. Yardımcı, D. Wiitala, M. Galarnyk, and J. Wang. 2014. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 10:4154–9. doi:10.1002/smll.201401013.
  • Guix, M., A. K. Meyer, B. Koch, and O. G. Schmidt. 2016. Carbonate-based janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ. Scientific Reports 6 (1):7–21701. doi:10.1038/srep21701.
  • Halder, A., and Y. Sun. 2019. Biocompatible propulsion for biomedical micro/nano robotics. Biosensors and Bioelectronics 139:111334. doi:10.1016/j.bios.2019.111334.
  • Han, X., C. Wang, and Z. Liu. 2018. Red blood cells as smart delivery systems. Bioconjugate Chemistry 29 (4):852–60. doi:10.1021/acs.bioconjchem.7b00758.
  • Hoop, M., F. Mushtaq, C. Hurter, X.-Z. Chen, B. J. Nelson, and S. Pané. 2016. Smart multifunctional drug delivery nanoplatform for targeting cancer cells. Nanoscale 8 (25):12723–8. doi:10.1039/C6NR02228F.
  • Iordanescu, A., M. Tertis, A. Cernat, M. Suciu, R. Sandulescu, and C. Cristea. 2018. Poly‐(pyrrole‐3‐carboxylic acid) based nanostructured platform for the detection of carcinoembryonic antigen. Electroanalysis 30:1100–6. doi:10.1002/elan.201700803.
  • Jurado-Sanchez, B., M. Pacheco, J. Rojo, and A. Escarpa. 2017. magnetocatalytic graphene quantum dots janus micromotors for bacterial endotoxin detection. Angewandte Chemie 129:7061–5. doi:10.1002/ange.201701396.
  • Kagan, D., M.J. Benchimol, J.C. Claussen, E. Chuluun-Erdene, S. Esener, and J. Wang. 2012. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angewandte Chemie 51:1–5.
  • Khezri, B., S. Mohsen, B. Mousavi, and L. Krejc. 2018. Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Advanced Functional Materials 29:1–10 (1806696. doi:10.1002/adfm.201806696.
  • Kong, L., J. Guan, and M. Pumera. 2018. Micro- and nanorobots based sensing and biosensing. Current Opinion in Electrochemistry 10:174–82. doi:10.1016/j.coelec.2018.06.004.
  • Kong, L., N. Rohaizad, M. Z. M. Nasir, J. Guan, and M. Pumera. 2019. Micromotor-assisted human serum glucose biosensing. Analytical Chemistry 91 (9):5660–6. doi:10.1021/acs.analchem.8b05464.
  • Leigh, D. A. 2016. Genesis of the nanomachines: The 2016 nobel prize in chemistry. Angewandte Chemie International Edition 55 (47):14506–8. doi:10.1002/anie.201609841.
  • Li, J., P. Angsantikul, W. Liu, B. E.-F. De Ávila, X. Chang, E. Sandraz, and Y. Liang. 2018. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats. Advanced Materials 30:1–8 1704800. doi:10.1002/adma.201704800.
  • Li, J., B. Esteban-Fernandez de Ávila, W. Gao, L. Zhang, and J. Wang. 2017. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Science Robotics 2 (4):eaam6431–9. doi:10.1126/scirobotics.aam6431.
  • Li, S., Q. Jiang, B. Ding, and G. Nie. 2019. Anticancer activities of tumor-killing nanorobots. Trends in Biotechnology 37 (6):573–7. doi:10.1016/j.tibtech.2019.01.010.
  • Liu, M., Y. Sun, T. Wang, Z. Ye, H. Zhang, B. Dong, and C. Y. Li. 2016. A biodegradable, all-polymer micromotor for gas sensing applications. Journal of Materials Chemistry C 4 (25):5945–52. doi:10.1039/C6TC00971A.
  • Ma, X., A. Jannasch, U.-R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, and S. Sánchez. 2015. Enzyme-powered hollow mesoporous Janus nanomotors. Nano Letters 15 (10):7043–50. doi:10.1021/acs.nanolett.5b03100.
  • Magdanz, V., M. Medina-Sánchez, Y. Chen, M. Guix, and O. G. Schmidt. 2015. How to improve spermbot performance. Advanced Functional Materials 25 (18):2763–70. doi:10.1002/adfm.201500015.
  • Milica, S., S. Arbault, B. Goudeau, D. Manojlovic, A. Kuhn, L. Bouffier, and N. Sojic. 2014. Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chemical Communications 50:10202–5. doi:10.1039/C4CC04105D.
  • Morales-Narváez, E., M. Guix, M. Medina-Sánchez, C. C. Mayorga-Martinez, and A. Merkoçi. 2014. Micromotor enhanced microarray technology for protein detection. Small 10 (13):2542–8. doi:10.1002/smll.201303068.
  • Nance, E. 2019. Careers in nanomedicine and drug delivery. Advanced Drug Delivery Reviews 144:180–9. doi:10.1016/j.addr.2019.06.009.
  • Orozco, J., G. Pan, S. Sattayasamitsathit, M. Galarnyk, and J. Wang. 2015. Micromotors to capture and destroy anthrax simulant spores. The Analyst 140 (5):1421–7. doi:10.1039/C4AN02169J.
  • Parmar, J., D. Vilela, K. Villa, J. Wang, and S. Sánchez. 2018. Micro- and nanomotors as active environmental microcleaners and sensors. Journal of the American Chemical Society 140 (30):9317–31. doi:10.1021/jacs.8b05762.
  • Paxton, W. F., K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society 126 (41):13424–31. doi:10.1021/ja047697z.
  • Peters, C., O. Ergeneman, P. D. Wendel García, M. Müller, S. Pané, B. J. Nelson, and C. Hierold. 2014. Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications. Advanced Functional Materials 24 (33):5269–76. doi:10.1002/adfm.201400596.
  • Plutnar, J., and M. Pumera. 2019. Chemotactic micro- and nanodevices. Angewandte Chemie International Edition 58 (8):2190–6. doi:10.1002/anie.201809101.
  • Qiu, F., and J. Nelson. 2015. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications. Engineering 1 (1):021–6. doi:10.15302/J-ENG-2015005.
  • Reini, L., S. Hermanova, and M. Pumera. 2019. Micro/nanomachines: What is needed for them to become a real force in cancer therapy ? Nanoscale 11:6519–32. doi:10.1039/C8NR08022D.
  • Ren, L., W. Wang, and T.E. Mallouk. 2018. Two forces are better than one: Combining chemical and acoustic propulsion for enhanced micromotor functionality. Accounts of Chemical Research 51 (9):1948–56. − doi:10.1021/acs.accounts.8b00248.
  • Sánchez, S.,. W. Xi, A. A. Solovev, L. Soler, V. Magdanz, and O. G. Schmidt. 2014. Tubular micro-nanorobots: Smart design for bio-related applications. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8336 LNAI, 16–27. Springer Verlag, Heidelberg, Germany.
  • Shetty, N. J., P. Swati, and K. David. 2013. Nanorobots: Future in Dentistry. The Saudi Dental Journal 25 (2):49–52. doi:10.1016/j.sdentj.2012.12.002.
  • Singh, H. R., E. Kopperger, and F. C. Simmel. 2018. Spotlight A DNA Nanorobot Uprises against Cancer. Trends in Molecular Medicine 24 (7):591–3. doi:10.1016/j.molmed.2018.05.001.
  • Stanton, M. M., J. Simmchen, X. Ma, A. Miguel-López, and S. Sánchez. 2016. Biohybrid Janus motors driven by Escherichia Coli. Advanced Materials Interfaces 3 (2):1500505–8 (1500505. doi:10.1002/admi.201500505.
  • Taherkhani, S., M. Mohammadi, J. Daoud, S. Martel, and M. Tabrizian. 2014. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled. ACS Nano 5:5049–60. doi:10.1021/nn5011304.
  • Tattori, S., L. Zhang, F. Qui, K. K. Krawczyk, A. Franco‐Obregón, and B. J. Nelson. 2012. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Advanced Materials 24:811–6. doi:10.1002/adma.201103818.
  • Venugopalan, P. L., R. Sai, Y. Chandorkar, B. Basu, S. Shivashankar, and A. Ghosh. 2014. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Letters 14 (4):1968–310. doi:10.1021/nl404815q.
  • Vilela, D., M. M. Stanton, J. Parmar, and S. Sánchez. 2017. Microbots decorated with silver nanoparticles kill bacteria in aqueous media. ACS Applied Materials & Interfaces 9:22093–100. doi:10.1021/acsami.7b03006.
  • Wang, W.,. L.A. Castro, M. Hoyos, and T.E. Mallouk. 2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano. 6 (7):6122–32. doi:10.1021/nn301312z.
  • Wang, J., Z. Xiong, J. Zheng, X. Zhan, and J. Tang. 2018. Light-driven micro/nanomotor for promising biomedical tools: Principle, challenge, and prospect. Accounts of Chemical Research 51 (9):1957–65. − doi:10.1021/acs.accounts.8b00254.
  • Wang, H., and M. Pumera. 2018. Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs. Advanced Functional Materials 28:1-17 (1705421. doi:10.1002/adfm.201705421.
  • Wu, J., S. Balasubramanian, D. Kagan, K. M. Manesh, S. Campuzano, and J. Wang. 2010. Motion-based DNA detection using catalytic nanomotors. Nature Communications 1 (1):1–6. doi:10.1038/ncomms1035.
  • Wu, Y., X. Lin, Z. Wu, H. Möhwald, and Q. He. 2014. Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Applied Materials & Interfaces 6 (13):10476–81. doi:10.1021/am502458h.
  • Wu, Z., J. Li, B. E.-F. de Ávila, T. Li, W. Gao, Q. He, L. Zhang, and J. Wang. 2015. Water-powered cell-mimicking janus micromotor. Advanced Functional Materials 25 (48):7497–501. doi:10.1002/adfm.201503441.
  • Xu, H., and O. G. Schmidt. 2018. Micro- and nano-motors: The new generation of drug carriers. Therapeutic Delivery 9:303–16. doi:10.4155/tde-2017-0113.
  • Yang, J., C. Zhang, X. D. Wang, W. X. Wang, N. Xi, and L. Q. Liu. 2019. Development of micro- and nanorobotics: A review. Science China Technological Sciences 62 (1):1–20. doi:10.1007/s11431-018-9339-8.
  • Zhou, M., T. Hou, J. Li, S. Yu, Z. Xu, M. Yin, J. Wang, and X. Wang. 2019. Self-propelled and targeted drug delivery of poly(aspartic acid)/iron–zinc microrocket in the stomach. ACS Na 13:1324–32. doi:10.1021/acsnano.8b06773.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.