478
Views
18
CrossRef citations to date
0
Altmetric
Voltammetry

Differential Pulse Voltammetric Determination of Folic Acid Using a Poly(Cystine) Modified Pencil Graphite Electrode

, &
Pages 2060-2078 | Received 09 Jan 2020, Accepted 08 Feb 2020, Published online: 17 Feb 2020

References

  • Akbar, S., A. Anwar, and Q. Kanwal. 2016. Electrochemical determination of folic acid: A short review. Analytical Biochemistry 510:98–105. doi:10.1016/j.ab.2016.07.002.
  • Alvarez, J. M. F., A. C. Garcia, A. J. M. Ordieres, and P. T. Blanco. 1987. Adsorptive stripping voltammetric behavior of folic acid. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 225 (1–2):241–53. doi:10.1016/0022-0728(87)80017-7.
  • Arvand, M., and M. Dehsaraei. 2013. A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles-modified carbon paste electrode. Materials Science and Engineering: C 33 (6):3474–80. doi:10.1016/j.msec.2013.04.037.
  • Bandžuchová, L., R. Šelešovská, T. Navrátil, and J. Chýlková. 2011. Electrochemical behavior of folic acid on mercury meniscus modified silver solid amalgam electrode. Electrochimica Acta 56 (5):2411–9. doi:10.1016/j.electacta.2010.10.090.
  • Deinhammer, R.S., M. Ho, J. W. Anderegg, and M.D. Porter. 1994. Electrochemical oxidation of amine-containing compounds: A route to the surface modification of glassy carbon electrodes. Langmuir 10 (4):1306–13. doi:10.1021/la00016a054.
  • Ensafi, A. A., and H. Karimi-Maleh. 2010. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. Journal of Electroanalytical Chemistry 640 (1–2):75–83. doi:10.1016/j.jelechem.2010.01.010.
  • Friel, J. K., M. Frecker, and F. C. Fraser. 1995. Nutritional patterns of mothers of children with neural tube defects in Newfoundland. American Journal of Medical Genetics 55 (2):195–9. doi:10.1002/ajmg.1320550209.
  • Gao, X., H. Yue, S. Huang, X. Lin, X. P. A. Gao, B. Wang, L. Yao, W. Wang, and E. Guo. 2018. Synthesis of graphene/ZnO nanowire arrays/graphene foam and its application for determination of folic acid. Journal of Electroanalytical Chemistry 808:189–94. doi:10.1016/j.jelechem.2017.12.017.
  • Gonçalves de Araújo, E., N. S. Fernandes, L. G. Da Silva Solon, C. F. Soares Aragão, and C. A. Martinez-Huitle. 2015. Voltammetric determination of folic acid using a graphite paste electrode. Electroanalysis 27 (2):398–405. doi:10.1002/elan.201400475.
  • Gopal, P., T. Madhusudana, R. Pamula Raghu, K. Reddaiah, and P. Venkata Narayana. 2015. Electrocatalytic Activity of L-Cystine towards the Sensitive and Simultaneous Measurement of Nitrobenzene and 4-Nitrophenol: A Voltammetric Study. Analytical & Bioanalytical Electrochemistry 7 (6):739–51.
  • Gopal, P., T. M. Reddy, C. Nagaraju, and G. Narasimha. 2014. Preparation, characterization and analytical application of an electrochemical laccase biosensor towards low level determination of isoprenaline in human serum samples. RSC Adv. 4 (101):57591–9. doi:10.1039/C4RA09989C.
  • Gorduk, O. 2019. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube–over-oxidized poly(3,4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters:1–19. doi:10.1080/00032719.2019.1693583.
  • Gujska, E., and K. Majewska. 2005. Effect of baking process on added folic acid and endogenous folates stability in wheat and rye breads. Plant Foods for Human Nutrition 60 (2):37–42. doi:10.1007/s11130-005-5097-0.
  • Harisha, K.V., B. E. Kumara Swamy, H. Jayadevappa, and C. C. Vishwanath. 2015. Voltammetric determination of folic acid in presence of dopamine and ascorbic acid at poly (alanine) modified carbon paste electrode. Analytical and Bioanalytical Electrochemistry 7 (4):454–65.
  • Jiang, X. L., R. Li, J. Li, and X. He. 2009. Electrochemical behavior and analytical determination of folic acid on carbon nanotube modified electrode. Russian Journal of Electrochemistry 45 (7):772–7. doi:10.1134/S1023193509070106.
  • Kalimuthu, P., and S. A. John. 2009. Selective electrochemical sensor for folic acid at physiological pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Biosensors and Bioelectronics 24 (12):3575–80. doi:10.1016/j.bios.2009.05.017.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2017. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synthetic Metals 233:111–8. doi:10.1016/j.synthmet.2017.09.009.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2018. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russian Journal of Electrochemistry 54 (11):796–808. doi:10.1134/S1023193518110046.
  • Koyun, O., S. Gorduk, M. Gencten, and Y. Sahin. 2019. A Novel Copper (II) Phthalocyanine Modified Multiwalled Carbon Nanotube-Based Electrode for Sensitive Electrochemical Detection of Bisphenol A. New Journal of Chemistry 43 (1):85–92. doi:10.1039/C8NJ03721C.
  • Koyun, O., H. Gursu, S. Gorduk, and Y. Sahin. 2017. Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode. International Journal of Electrochemical Science 12 (7):6428–44. doi:10.20964/2017.07.41.
  • Koyun, O., and Y. Sahin. 2018. Poly(L-cysteine) modified pencil graphite electrode for determination of sunset yellow in food and beverage samples by differential pulse voltammetry. International Journal of Electrochemical Science 13 (1):159–74. doi:10.20964/2018.01.40.
  • Koyun, O., and Y. Sahin. 2018. Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: Application in food and water samples. Ionics 24 (10):3187–97. doi:10.1007/s11581-017-2429-7.
  • Kuceki, M., F. M. de Oliveira, M. G. Segatelli, M. K. L. Coelho, A. C. Pereira, L. R. da Rocha, R. T. César, and C. R. T. Tarley. 2018. Selective and sensitive voltammetric determination of folic acid using graphite/restricted access molecularly imprinted poly(methacrylic acid)/SiO2 composite. Journal of Electroanalytical Chemistry 818:223–30. doi:10.1016/j.jelechem.2018.04.043.
  • Kun, Z., Z. Ling, H. Yi, C. Ying, T. Dongmei, Z. Shuliang, and Z. Yuyang. 2012. Electrochemical behavior of folic acid in neutral solution on the modified glassy carbon electrode: Platinum nanoparticles doped multi-walled carbon nanotubes with Nafion as adhesive. Journal of Electroanalytical Chemistry 677–680:105–12. doi:10.1016/j.jelechem.2012.05.010.
  • Lapa, R. A. S., J. L. F. C. Lima, B. F. Reis, J. L. M. Santos, and E. A. G. Zagatto. 1997. Photochemical-fluorimetric determination of folic acid in a multicommutated flow system. Analytica Chimica Acta 351 (1–3):223–8. doi:10.1016/S0003-2670(97)00335-8.
  • Laviron, E. 1974. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 52 (3):355–93. doi:10.1016/S0022-0728(74)80448-1.
  • Loguercio, L. F., P. Demingos, L. D. M. Manica, J. B. Griep, M. J. L. Santos, and J. Ferreira. 2016. Simple One-step method to synthesize polypyrrole-indigo carmine-silver nanocomposite. Journal of Chemistry 2016:1–8. doi:10.1155/2016/5284259.
  • Mahnashi, M. H., A. M. Mahmoud, S. A. Alkahtani, R. Ali, and M. M. El-Wekil. 2020. Facile fabrication of a novel disposable pencil graphite electrode for simultaneous determination of promising immunosuppressant drugs mycophenolate mofetil and tacrolimus in human biological fluids. Analytical and Bioanalytical Chemistry 412 (2):355–64. doi:10.1007/s00216-019-02245-8.
  • Mazloum-Ardakani, M., H. Beitollahi, M. K. Amini, F. Mirkhalaf, and M. Abdollahi-Alibeik. 2010. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sensors and Actuators B: Chemical 151 (1):243–9. doi:10.1016/j.snb.2010.09.011.
  • Mazloum-Ardakani, M., M. A. Sheikh-Mohseni, M. Abdollahi-Alibeik, and A. Benvidi. 2012. Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sensors and Actuators B: Chemical 171–172:380–6. doi:10.1016/j.snb.2012.04.071.
  • Mirmoghtadaie, L., A. A. Ensafi, M. Kadivar, M. Shahedi, and M. R. Ganjali. 2013. Highly selective, sensitive and fast determination of folic acid in food samples using new electrodeposited gold nanoparticles by differential pulse voltammetry. International Journal of Electrochemical Science 8 (3):3755–67.
  • Nagaraja, P., R. A. Vasantha, and H. S. Yathirajan. 2002. Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate-pyrocatechol. Analytical Biochemistry 307 (2):316–21. doi:10.1016/S0003-2697(02)00038-6.
  • Nie, T., L. Lu, L. Bai, J. Xu, K. Zhang, O. Zhang, Y. Wen, and L. Wu. 2013. Simultaneous determination of folic acid and uric acid under coexistence of l-ascorbic acid using a modified electrode based on poly(3,4-ethylenedioxythiophene) and functionalized single-walled carbon nanotubes composite. International Journal of Electrochemical Science 8 (5):7016–29.
  • Ozcan, A., and Y. Sahin. 2010. Preparation of selective and sensitive electrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum. Biosensors & Bioelectronics 25 (11):2497–502. doi:10.1016/j.bios.2010.04.020.
  • Ren, W., Y. Fang, and E. Wang. 2011. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano 5 (8):6425–33. doi:10.1021/nn201606r.
  • Rodríguez-Bernaldo De Quirós, A., C. Castro De Ron, J. López-Hernández, and M. A. Lage-Yusty. 2004. Determination of folates in seaweeds by high-performance liquid chromatography. Journal of Chromatography A 1032 (1–2):135–9. doi:10.1016/j.chroma.2003.11.027.
  • Santos, D.P., M.V.B. Zanoni, M. F. Bergamini, A. M. Chiorcea-Paquim, V. C. Diculescu, and A. M. Oliveira Brett. 2008. Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance. Electrochimica Acta. 53 (11):3991–4000. doi:10.1016/j.electacta.2007.08.072.
  • Shaikshavali, P., T. M. Reddy, T. M. Reddy, and G. Venkataprasad. 2017. Fabrication, characterization and application of poly(l-cystine)/multi walled carbon nanotubes modified glassy carbon electrode towards the simultaneous determination of dopamine in presence of uric acid and folic acid. Analytical and Bioanalytical Electrochemistry 9 (7):940–55.
  • Sivasankaran, U., A. E. Vikraman, D. Thomas, and K. G. Kumar. 2016. Nanomolar Level Determination of Octyl Gallate in Fats and Oils. Food Analytical Methods 9 (7):2115–23. doi:10.1007/s12161-015-0356-7.
  • Taherkhani, A., T. Jamali, H. Hadadzadeh, H. Karimi-Maleh, H. Beitollahi, M. Taghavi, and F. Karimi. 2014. ZnO nanoparticle-modified ionic liquid-carbon paste electrode for voltammetric determination of folic acid in food and pharmaceutical samples. Ionics 20 (3):421–9. doi:10.1007/s11581-013-0992-0.
  • Tahtaisleyen, S., O. Gorduk, and Y. Sahin. 2020. Electrochemical Determination of Tartrazine Using a Graphene/Poly(L-Phenylalanine) Modified Pencil Graphite Electrode. Analytical Letters:1–21. doi:10.1080/00032719.2020.1716242.
  • Xiao, F., C. Ruan, L. Liu, R. Yan, F. Zhao, and B. Zeng. 2008. Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sensors and Actuators B: Chemical 134 (2):895–901. doi:10.1016/j.snb.2008.06.037.
  • Zare, H. R., N. Rajabzadeh, N. Nasirizadeh, and M. Mazloum-Ardakani. 2006. Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. Journal of Electroanalytical Chemistry 589 (1):60–9. doi:10.1016/j.jelechem.2006.01.011.
  • Zhang, B., L. Zhao, and J. Lin. 2008. Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt (II) system. Talanta 74 (5):1154–9. doi:10.1016/j.talanta.2007.08.027.
  • Zheng, Y., and L. C. Cantley. 2019. Toward a better understanding of folate metabolism in health and disease. The Journal of Experimental Medicine 216 (2):253–66. doi:10.1084/jem.20181965.
  • Zittoun, J. 1993. [Anemias due to disorder of folate, vitamin B12 and transcobalamin metabolism]. La Revue du Praticien 43 (11):1358–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.