161
Views
3
CrossRef citations to date
0
Altmetric
Nuclear Magnetic Resonance

Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles

ORCID Icon, , ORCID Icon, &
Pages 124-139 | Received 29 Nov 2019, Accepted 13 Feb 2020, Published online: 23 Feb 2020

References

  • Aime, S., M. Botta, D. Esteban-Gómez, and C. Platas-Iglesias. 2019. Characterisation of magnetic resonance imaging contrast agents using NMR relaxometry. Molecular Physics 117 (7–8):898–909. doi:10.1080/00268976.2018.1516898.
  • Borutaite, V., R. Morkuniene, and G. C. Brown. 2000. Nitric oxide donors, nitrosothiols and mitochondrial respiration inhibitors induce caspase activation by different mechanisms. FEBS Letters 467 (2–3):155–9. doi:10.1016/S0014-5793(00)01140-6.
  • Chan, F. K., K. Moriwaki, and M.J. De Rosa. 2013. Detection of necrosis by release of lactate dehydrogenase activity. Methods in Molecular Biology (Clifton, NJ) 979:65–70. doi:10.1007/978-1-62703-290-2_7.
  • Cîrcu, M., A. Nan, G. Borodi, J. Liebscher, and R. Turcu. 2016. Refinement of magnetite nanoparticles by coating with organic stabilizers. Nanomaterials 6 (12):228. doi:10.3390/nano6120228.
  • Gladwin, M. T., A. N. Schechter, D. B. Kim-Shapiro, R. P. Patel, N. Hogg, S. Shiva, R. O. Cannon, M. Kelm, D. A. Wink, M. G. Espey, et al. 2005. The emerging biology of the nitrite anion. Nature Chemical Biology 1 (6):308–14. doi:10.1038/nchembio1105-308.
  • Goodwill, P. W., E. U. Saritas, L. R. Croft, T. N. Kim, K. M. Krishnan, D. V. Schaffer, and S. M. Conolly. 2012. X-Space MPI: Magnetic nanoparticles for safe medical imaging. Advanced Materials 24 (28):3870–7. doi:10.1002/adma.201200221.
  • Henoumont, C., L. Vander Elst, R. N. Muller, and S. Laurent. 2018. Paramagnetic complexes and superparamagnetic systems. In New developments in NMR, ed. R. Kimmich, 427–47. Croydon, UK: RSC, Printed in UK by CPI Group Ltd.
  • ISO 10993-5. 2009. Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity.
  • Jin, R., B. Lin, D. Li, and H. Ai. 2014. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: Design considerations and clinical applications. Current Opinion in Pharmacology 18:18–27.
  • Kimmich, R., and E. Anoardo. 2004. Field-cycling NMR relaxometry. Progress in Nuclear Magnetic Resonance Spectroscopy 44 (3–4):257–89. doi:10.1016/j.pnmrs.2004.03.002.
  • Laurent, S., D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller. 2008. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 108 (6):2064–110. doi:10.1021/cr068445e.
  • Laurent, S., A. A. Saei, S. Behzadi, A. Panahifar, and M. Mahmoudi. 2014. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opinion on Drug Delivery 11:1–22.
  • Lee, N., D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon. 2015. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chemical Reviews 115 (19):10637–89. doi:10.1021/acs.chemrev.5b00112.
  • López-García, J., M. Lehocký, P. Humpolíček, and P. Sáha. 2014. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. Journal of Functional Biomaterials 5 (2):43–57. doi:10.3390/jfb5020043.
  • Lundberg, J. O., E. Weitzberg, and M. T. Gladwin. 2008. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery 7 (2):156–67. doi:10.1038/nrd2466.
  • Marshall, N. J., C. J. Goodwin, and S. J. Holt. 1995. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regulation 5 (2):69–84.
  • Meiboom, S., and D. Gill. 1958. Modified spin‐echo method for measuring nuclear relaxation times. Review of Scientific Instruments 29 (8):688–91. doi:10.1063/1.1716296.
  • Miyamoto, T., M. J. Petrus, A. E. Dubin, and A. Patapoutian. 2011. TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nature Communications 2:369doi:10.1038/ncomms1371.
  • Mo, L., Y. Wang, L. Geary, C. Corey, M. J. Alef, D. Beer-Stolz, B. S. Zuckerbraun, and S. Shiva. 2012. Nitrite activates AMP kinase to stimulate mitochondrial biogenesis independent of soluble guanylate cyclase. Free Radical Biology and Medicine 53 (7):1440–50. doi:10.1016/j.freeradbiomed.2012.07.080.
  • Nedyalkova, M., B. Donkova, J. Romanova, G. Tzvetkov, S. Madurga, and V. Simeonov. 2017. Iron oxide nanoparticles—In vivo/in vitro biomedical applications and in silico studies. Advances in Colloid and Interface Science 249:192–212. doi:10.1016/j.cis.2017.05.003.
  • Opländer, C., and C. V. Suschek. 2009. New Aspects of nitrite homeostasis in human skin. Journal of Investigative Dermatology 129 (4):820–2. doi:10.1038/jid.2009.11.
  • Pankhurst, Q. A., N. K. T. Thanh, S. K. Jones, and J. Dobson. 2009. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 42 (22):224001–15. doi:10.1088/0022-3727/42/22/224001.
  • Reddy, L. H., J. L. Arias, J. Nicolas, and P. Couvreur. 2012. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews 112 (11):5818–78. doi:10.1021/cr300068p.
  • Riss, T. L., R. A. Moravec, A. L. Niles, S. Duellman, H. A. Benink, T. J. Worzella, and L. Minor. 2013. Cell viability assays. In Assay guidance manual [Internet], ed. G. S. Sittampalam, N. P. Coussens, K. Brimacombe, M. Arkin, D. Auld, C. P. Austin, J. Baell, B. Bejcek, J. M. M. Caaveiro, T. D. Y Chung, et al. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences. https://www.ncbi.nlm.nih.gov/books/NBK144065.
  • Rogosnitzky, M., and S. Branch. 2016. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals 29 (3):365–76. doi:10.1007/s10534-016-9931-7.
  • Santidrian, A. F., A. M. Yagi, M. Ritland, B. B. Seo, S. E. LeBoeuf, L. J. Gay, T. Yagi, and B. Felding-Habermann. 2013. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. Journal of Clinical Investigation 123 (3):1068–81. doi:10.1172/JCI64264.
  • Surin, A. M., R. R. Sharipov, I. A. Krasilnikova, D. P. Boyarkin, O. Y. Lisina, L. R. Gorbacheva, A. V. Avetisyan, and V. G. Pinelis. 2017. Disruption of functional activity of mitochondria during MTT assay of viability of cultured neurons. Biochemistry (Moscow) 82:737–49. doi:10.1134/S0006297917060104.
  • Theodosakis, N., G. Micevic, D. P. Kelly, and M. Bosenberg. 2014. Mitochondrial function in melanoma. Archives of Biochemistry and Biophysics 563:56–9. doi:10.1016/j.abb.2014.06.028.
  • Thomas, C. E., and D. J. Reed. 1988. Effect of extracellular Ca++ omission on isolated hepatocytes. II. Loss of mitochondrial membrane potential and protection by inhibitors of uniport Ca++ transduction. Journal of Pharmacology and Experimental Therapeutics. 245 (2):501–7.
  • Veiseh, O., J. W. Gunn, and M. Zhang. 2010. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews 62 (3):284–304. doi:10.1016/j.addr.2009.11.002.
  • Wang, K., L. An, Q. Tian, J. Lin, and S. Yang. 2018. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T1–T2 contrast agent for magnetic resonance imaging. RSC Advances 8 (47):26764–70. doi:10.1039/C8RA04530E.
  • Wang, R., Y. Hu, Y. Yang, W. Xu, M. Yao, D. Gao, Y. Zhao, S. Zhan, X. Shi, and X. Wang. 2017. Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma. Journal of Nanoparticle Research 19:39.
  • Wu, D., and P. Yotnda. 2011. Production and detection of reactive oxygen species (ROS) in cancers. Journal of Visualized Experiments 57: E3357. doi:10.3791/3357.
  • Yang, L., C. Sun, H. Lin, X. Gong, T. Zhou, W. T. Deng, Z. Chen, and J. Gao. 2019. Sensitive contrast-enhanced MR imaging of orthotopic and metastatic hepatic tumors by ultralow doses of zinc ferrite octapods. Chemistry of Materials 31 (4):1381–90. doi:10.1021/acs.chemmater.8b04760.
  • Yang, Z., B. Misner, H. Ji, T. L. Poulos, R. B. Silverman, F. L. Meyskens, and S. Yang. 2013. Targeting nitric oxide signalling with nNOS inhibitors as a novel strategy for the therapy and prevention of human melanoma. Antioxidants & Redox Signaling 19 (5):433–47. doi:10.1089/ars.2012.4563.
  • Zhang, G., R. Du, L. Zhang, D. Cai, X. Sun, Y. Zhou, J. Zhou, J. Qian, K. Zhong, K. Zheng, et al. 2015. Gadolinium‐doped iron oxide nanoprobe as multifunctional bioimaging agent and drug delivery system. Advanced Functional Materials 25 (38):6101–11. doi:10.1002/adfm.201502868.
  • Zhou, H., J. Tang, J. Li, W. Li, Y. Liu, and C. Chen. 2017. In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. Nanoscale 9 (9):3040–50. doi:10.1039/C7NR00089H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.