212
Views
9
CrossRef citations to date
0
Altmetric
Separations

Adsorption Kinetics of Chromium (VI) from Aqueous Solution Using an Anion Exchange Resin

, &
Pages 140-149 | Received 22 Nov 2019, Accepted 14 Feb 2020, Published online: 17 Mar 2020

References

  • Badruddoza, A. Z., Z. B. Z. Shawon, M. T. Rahman, K. W. Hao, K. Hidajat, and M. S. Uddin. 2013. Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chemical Engineering Journal 225:607–15. doi:10.1016/j.cej.2013.03.114.
  • Burakov, A. E., E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta. 2018. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety 148:702–12. doi:10.1016/j.ecoenv.2017.11.034.
  • Chang, G. L., A. P. Jeong, W. C. Jae, O. K. Seok, and H. L. Sang. 2016. Removal and recovery of Cr (VI) from industrial plating wastewater using fibrous anion exchanger. Water, Air and Soil Pollution 227:287. doi:10.1007/s11270-016-2992-y.
  • Deepa, K., P. Mazumder, M. Kumarc, J. P. Dekad, and J. Shime. 2018. Simultaneous removal of Congo red and Cr (VI) in aqueous solution by using Mn powder extracted from battery waste solution. Groundwater for Sustainable Development 7:459–64. doi:10.1016/j.gsd.2018.01.001.
  • Dehghani, M. H., D. Sanaei, I. Ali, and A. Bhatnagar. 2016. Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. Journal of Molecular Liquids 215:671–9. doi:10.1016/j.molliq.2015.12.057.
  • Díaz, C. E. B., V. L. Lugo, and B. Bilyeu. 2012. A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. Journal of Hazardous Materials 223–224:1–12. doi:10.1016/j.jhazmat.2012.04.054.
  • Drăgan, E. S., D. Humelnicu, and M. V. Dinu. 2018. Design of porous strong base anion exchangers bearing N,N-dialkyl 2-hydroxyethyl ammonium groups with enhanced retention of Cr(VI) ions from aqueous solution. Reactive and Functional Polymers 124:55–63. doi:10.1016/j.reactfunctpolym.2018.01.010.
  • Erdema, M., and F. Tumenb. 2004. Chromium removal from aqueous solution by the ferrite process. Journal of Hazardous Materials B 109 (1–3):71–7. doi:10.1016/j.jhazmat.2004.02.031.
  • Fathy, M. M. S., M. W. I. Nassar, M. M. K. S. El-Din, K. A. M. Attia, and M. Y. Kaddah. 2011. Determination of fenofibrate and the degradation product using simultaneous UV-derivative spectrometric method and HPLC. American Journal of Analytical Chemistry 2:332–43. doi:10.4236/ajac.2011.23042.
  • Gorzin, F. 2018. Adsorption of Cr (VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science & Technology 36 (1–2):149–69. doi:10.1177/0263617416686976.
  • Ho, Y. S., and A. E. Ofomaja. 2005. Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochemistry 40 (11):3455–61. doi:10.1016/j.procbio.2005.02.017.
  • Hua, M., B. Yang, C. Shan, W. Zhang, S. He, L. Lv, and B. Pan. 2017. Simultaneous removal of As (V) and Cr (VI) from water by microporous anion exchanger supported nanoscale hydrous ferric oxide composite. Chemosphere 171:126–33. doi:10.1016/j.chemosphere.2016.12.051.
  • Jinbei, Y., M. Yu, and W. Chen. 2015. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry 21:414–22. doi:10.1016/j.jiec.2014.02.054.
  • Kumar, P. S., K. Ramakrishnan, S. D. Kirupha, and S. Sivanesan. 2010. Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazilian Journal of Chemical Engineering 27 (2):347–55. doi:10.1590/S0104-66322010000200013.
  • Liu, X., L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, and C. Sun. 2012. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (VI.). Chemical Engineering Journal 183:238–43. doi:10.1016/j.cej.2011.12.068.
  • Marcu, C., D. Axente, and A. Balla. 2015. Kinetic and thermodynamic studies of U (VI) adsorption using Dowex-Marathon resin. Journal of Radioanalytical and Nuclear Chemistry 305 (2):623–30. doi:10.1007/s10967-015-3959-y.
  • Novak, M., O. Sebek, V. Chrastny, L. A. Hellerich, A. Andronikov, E. Martinkova, J. Farkas, P. Pacherova, J. Curik, M. Stepanova, et al. 2018. Comparison of δ53 Cr (VI) values of contaminated groundwater at two industrial sites in the eastern U.S. with contrasting availability of reducing agents. Chemical Geology 481:74–84. doi:10.1016/j.chemgeo.2018.01.033.
  • Nur, T., P. Loganathan, T. C. Nguyen, S. Vigneswaran, G. Singh, and J. Kandasamy. 2014. Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: Solution chemistry and modeling. Chemical Engineering Journal 247:93–102. doi:10.1016/j.cej.2014.03.009.
  • Sherlala, A. I. A., A. A. A. Raman, M. M. Bello, and A. Asghar. 2018. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–17. doi:10.1016/j.chemosphere.2017.11.093.
  • Sujitra, T., O. A. Arqueropanyo, W. Naksata, P. Sooksamiti, and I. Chairsri. 2019. Adsorption of arsenate from aqueous solution by ferric oxide-impregnated Dowex-Marathon MSA anion exchange resin: Application of non linear isotherm modeling and thermodynamic studies. Environmental Earth Sciences 78:136. doi:10.1007/s12665-019-8138-y.
  • Tande, T., J. E. Pettersen, and T. Torgrimsen. 1980. Simultaneous determination of Cr (VI) and Cr (III) in water by reversed phase HPLC, after chelating with sodium diethyldithio carbamate. Chromatographia 13 (10):607–10. doi:10.1007/BF02302460.
  • Wang, W. 2018. Chromium (VI) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption. Chemosphere 190:97–102. doi:10.1016/j.chemosphere.2017.09.141.
  • Wawrzkiewicz, M. 2013. Removal of C.I. Basic Blue 3 dye by sorption onto cation exchange resin, functionalized and non-functionalized polymeric sorbents from aqueous solutions and wastewaters. Chemical Engineering Journal 217:414–25. doi:10.1016/j.cej.2012.11.119.
  • Wójcik, G., and Z. Hubicki. 2018. Investigations of chromium (VI) ion sorption and reduction on strongly basic anion exchanger. Separation Science and Technology 53 (7):1088–96. 1335323 doi:10.1080/01496395.2017.
  • Wu, F. C., R. L. Tseng, and R. S. Juang. 2009. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye chitosan systems. Chemical Engineering Journal 150 (2–3):366–73. doi:10.1016/j.cej.2009.01.014.
  • Zhang, Y., C. Zhu, F. Liu, Y. Yuan, H. Wu, and A. Li. 2019. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Science of the Total Environment 646:265–79. doi:10.1016/j.scitotenv.2018.07.279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.