626
Views
16
CrossRef citations to date
0
Altmetric
Fluorescence

Inorganic Cadmium Detection Using a Fluorescent Whole-Cell Bacterial Bioreporter

&
Pages 2715-2733 | Received 20 Feb 2020, Accepted 11 Apr 2020, Published online: 21 Apr 2020

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). 2012. Toxicological profile for cadmium. Atlanta (GA): Center for Disease Control (US). Accessed Jan 25, 2020. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 2019. Priority list of hazardous substances. Atlanta (GA): Center for Disease Control (US). Accessed Jan 29, 2020. https://www.atsdr.cdc.gov/spl/.
  • Aoshima, K. 2016. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium—historical review and perspectives. Soil Science and Plant Nutrition 62 (4):319–26. doi:10.1080/00380768.2016.1159116.
  • Bansod, B. K., T. Kumar, R. Thakur, S. Rana, and I. Singh. 2017. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics 94:443–55. doi:10.1016/j.bios.2017.03.031.
  • Bereza-Malcolm, L., S. Aracic, R. Kannan, G. Mann, and A. E. Franks. 2017. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors. Biosensors and Bioelectronics 94:380–7. doi:10.1016/j.bios.2017.03.029.
  • Biran, I., R. Babai, K. Levcov, J. Rishpon, and E. Z. Ron. 2000. Online and in situ monitoring of environmental pollutants: Electrochemical biosensing of cadmium. Environmental Microbiology 2 (3):285–90. doi:10.1046/j.1462-2920.2000.00103.x.
  • Brocklehurst, K. R., J. L. Hobman, B. Lawley, L. Blank, S. J. Marshall, N. L. Brown, and A. P. Morby. 1999. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Molecular Microbiology 31 (3):893–902. doi:10.1046/j.1365-2958.1999.01229.x.
  • Brutesco, C., S. Prévéral, C. Escoffier, E. C. T. Descamps, E. Prudent, J. Cayron, L. Dumas, M. Ricquebourg, G. Adryanczyk-Perrier, A. de Groot, et al. 2017. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. Environmental Science and Pollution Research 24 (1):52–65. doi:10.1007/s11356-016-6952-2.
  • Busenlehner, L. S., M. A. Pennella, and D. P. Giedroc. 2003. The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance. FEMS Microbiology Reviews 27 (2-3):131–43. doi:10.1016/S0168-6445(03)00054-8.
  • Chakraborty, S., A. R. Dutta, S. Sural, D. Gupta, and S. Sen. 2013. Ailing bones and failing kidneys: A case of chronic cadmium toxicity. Annals of Clinical Biochemistry: An International Journal of Biochemistry and Laboratory Medicine 50 (5):492–5. doi:10.1177/0004563213481207.
  • Chowdhury, S., M. A. J. Mazumder, O. Al-Attas, and T. Husain. 2016. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of the Total Environment 569-570:476–88. doi:10.1016/j.scitotenv.2016.06.166.
  • Currie, L. A. 1995. Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure and Applied Chemistry 67 (10):1699–723. doi:10.1351/pac199567101699.
  • Elcin, E., and H. A. Öktem. 2019. Whole-cell fluorescent bacterial bioreporter for arsenic detection in water. International Journal of Environmental Science and Technology 16 (10):5489–500. doi:10.1007/s13762-018-2077-0.
  • Elcin, E., and H. A. Öktem. 2020. Immobilization of fluorescent bacterial bioreporter for arsenic detection. Journal of Environmental Health Science and Engineering. Advance online publication. doi:10.1007/s40201-020-00447-2.
  • Endo, G., and S. Silver. 1995. CadC: The transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. Journal of Bacteriology 177 (15):4437–41. doi:10.1128/JB.177.15.4437-4441.1995.
  • Fu, Y. J., W. L. Chen, and Q. Y. Huang. 2008. Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance. Applied Microbiology and Biotechnology 79 (3):363–70. doi:10.1007/s00253-008-1442-1.
  • Gatti, D., B. Mitra, and B. P. Rosen. 2000. Escherichia coli soft metal ion-translocating ATPases. Journal of Biological Chemistry 275 (44):34009–12. doi:10.1074/jbc.R000012200.
  • Gireesh-Babu, P., and A. Chaudhari. 2012. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Molecular Biology Reports 39 (12):11225–9. doi:10.1007/s11033-012-2033-x.
  • Gui, Q., T. Lawson, S. Shan, L. Yan, and Y. Liu. 2017. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. Sensors 17 (7):1623. doi:10.3390/s17071623.
  • He, W., S. Yuan, W. H. Zhong, M. A. Siddikee, and C. C. Dai. 2016. Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Applied Microbiology and Biotechnology 100 (3):1109–19. doi:10.1007/s00253-015-7160-6.
  • Hou, Q., A. Ma, T. Wang, J. Lin, H. Wang, B. Du, X. Zhuang, and G. Zhuang. 2015. Detection of bioavailable cadmium, lead, and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set. Analytical and Bioanalytical Chemistry 407 (22):6865–71. doi:10.1007/s00216-015-8830-z.
  • Hynninen, A., K. Tõnismann, and M. Virta. 2010. Improving the sensitivity of bacterial bioreporters for heavy metals. Bioengineered Bugs 1 (2):132–8. doi:10.4161/bbug.1.2.10902.
  • Hynninen, A., and M. Virta. 2009. Whole-cell bioreporters for the detection of bioavailable metals. In Whole cell sensing systems II: Applications, ed. M. B. Gu and S. Belkin, vol. 118, 31–63. Berlin, Heidelberg: Springer.
  • International Agency for Research on Cancer (IARC). 2012. IARC monographs on the identification of carcinogenic hazards to humans. Last modified December 12, 2019. Accessed February 17, 2020. https://monographs.iarc.fr/list-of-classifications-volumes/.
  • Ivask, A., T. Rõlova, and A. Kahru. 2009. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnology 9 (1):41. doi:10.1186/1472-6750-9-41.
  • Ivask, A., M. Virta, and A. Kahru. 2002. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biology and Biochemistry 34 (10):1439–47. doi:10.1016/S0038-0717(02)00088-3.
  • Jaishankar, M., T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7 (2):60–72. doi:10.2478/intox-2014-0009.
  • Joe, M. H., K. H. Lee, S. Y. Lim, S. H. Im, H. P. Song, I. S. Lee, and D. H. Kim. 2012. Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioprocess and Biosystems Engineering 35 (1-2):265–72. doi:10.1007/s00449-011-0610-3.
  • Keasling, J. D., and G. A. Hupf. 1996. Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. Applied and Environmental Microbiology 62 (2):743–6. doi:10.1128/AEM.62.2.743-746.1996.
  • Kim, H., G. Jang, and Y. Yoon. 2020. Specific heavy metal/metalloid sensors: Current state and perspectives. Applied Microbiology and Biotechnology 104 (3):907–14. doi:10.1007/s00253-019-10261-y.
  • Kim, H. J., H. Jeong, and S. J. Lee. 2018. Synthetic biology for microbial heavy metal biosensors. Analytical and Bioanalytical Chemistry 410 (4):1191–203. doi:10.1007/s00216-017-0751-6.
  • Kim, H., W. Lee, and Y. Yoon. 2019. Heavy metal(loid) biosensor based on split-enhanced green fluorescent protein: Development and characterization. Applied Microbiology and Biotechnology 103 (15):6345–52. doi:10.1007/s00253-019-09908-7.
  • Kim, H. J., J. W. Lim, H. Jeong, S. J. Lee, D. W. Lee, T. Kim, and S. J. Lee. 2016. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosensors and Bioelectronics 79:701–8. doi:10.1016/j.bios.2015.12.101.
  • Kim, S., and Y. Yoon. 2016. Assessing bioavailability and genotoxicity of heavy metals and metallic nanoparticles simultaneously using dual-sensing Escherichia coli whole-cell bioreporters. Applied Biological Chemistry 59 (4):661–8. doi:10.1007/s13765-016-0206-3.
  • Kubier, A., R. T. Wilkin, and T. Pichler. 2019. Cadmium in soils and groundwater: A review. Applied Geochemistry 108:104388. doi:10.1016/j.apgeochem.2019.104388.
  • Kumar, S., N. Verma, and A. K. Singh. 2017. Development of cadmium specific recombinant biosensor and its application in milk samples. Sensors and Actuators B: Chemical 240:248–54. doi:10.1016/j.snb.2016.08.160.
  • Lee, S. W., E. Glickmann, and D. A. Cooksey. 2001. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Applied and Environmental Microbiology 67 (4):1437–44. doi:10.1128/AEM.67.4.1437-1444.2001.
  • Liu, J., S. J. Dutta, A. J. Stemmler, and B. Mitra. 2006. Metal-binding affinity of the transmembrane site in ZntA: Implications for metal selectivity. Biochemistry 45 (3):763–72. doi:10.1021/bi051836n.
  • Losev, V. N., O. V. Buyko, A. K. Trofimchuk, and O. N. Zuy. 2015. Silica sequentially modified with polyhexamethylene guanidine and arsenazo I for preconcentration and ICP- OES determination of metals in natural waters. Microchemical Journal 123:84–9. doi:10.1016/j.microc.2015.05.022.
  • Mehta, J., S. K. Bhardwaj, N. Bhardwaj, A. K. Paul, P. Kumar, K. H. Kim, and A. Deep. 2016. Progress in the biosensing techniques for trace-level heavy metals. Biotechnology Advances 34 (1):47–60. doi:10.1016/j.biotechadv.2015.12.001.
  • Nakamura, H. 2018. Current status of water environment and their microbial biosensor techniques–Part II: Recent trends in microbial biosensor development. Analytical and Bioanalytical Chemistry 410 (17):3967–89. doi:10.1007/s00216-018-1080-0.
  • Namieśnik, J., and A. Rabajczyk. 2010. The speciation and physico-chemical forms of metals in surface waters and sediments. Chemical Speciation & Bioavailability 22 (1):1–24. doi:10.3184/095422910X12632119406391.
  • Pohl, P. 2009. Determination of metal content in honey by atomic absorption spectroscopy. Trac Trends in Analytical Chemistry 28 (1):117–28. doi:10.1016/j.trac.2008.09.015.
  • Priyadarshi, H., A. Alam, P. Gireesh-Babu, R. Das, P. Kishore, S. Kumar, and A. Chaudhari. 2012. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment. Journal of Environmental Sciences 24 (5):963–8. doi:10.1016/S1001-0742(11)60820-6.
  • Rasmussen, L. D., R. R. Turner, and T. Barkay. 1997. Cell-density-dependent sensitivity of a mer-lux bioassay. Applied and Environmental Microbiology 63 (8):3291–3. doi:10.1128/AEM.63.8.3291-3293.1997.
  • Rensing, C., and R. M. Maier. 2003. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicology and Environmental Safety 56 (1):140–7. doi:10.1016/S0147-6513(03)00057-5.
  • Rensing, C., B. Mitra, and B. P. Rosen. 1997. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proceedings of the National Academy of Sciences USA 94 (26):14326–31. doi:10.1073/pnas.94.26.14326.
  • Riether, K. B., M. A. Dollard, and P. Billard. 2001. Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Applied Microbiology and Biotechnology 57 (5-6):712–6. doi:10.1007/s00253-001-0852-0.
  • Roointan, A., N. Shabab, J. Karimi, A. Rahmani, M. Y. Alikhani, and M. Saidijam. 2015. Designing a bacterial biosensor for detection of mercury in water solutions. Turkish Journal of BIOLOGY 39 (4):550–5. doi:10.3906/biy-1411-49.
  • Shetty, R. S., S. K. Deo, P. Shah, Y. Sun, B. P. Rosen, and S. Daunert. 2003. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Analytical and Bioanalytical Chemistry 376 (1):11–7. doi:10.1007/s00216-003-1862-9.
  • Sochor, J., O. Zitka, D. Hynek, E. Jilkova, L. Krejcova, L. Trnkova, V. Adam, J. Hubalek, J. Kynicky, R. Vrba, et al. 2011. Bio-sensing of cadmium(II) ions using Staphylococcus aureus. Sensors 11 (11):10638–63. doi:10.3390/s111110638.
  • Tao, H. C., Z. W. Peng, P. S. Li, T. A. Yu, and J. Su. 2013. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Biotechnology Letters 35 (8):1253–8. doi:10.1007/s10529-013-1216-4.
  • Tauriainen, S., M. M. Karp, W. Chang, and M. Virta. 1998. Luminescent bacterial sensor for cadmium and lead. Biosensors and Bioelectronics 13 (9):931–8. doi:10.1016/S0956-5663(98)00027-X.
  • Türkiye Cumhuriyeti Sağlık Bakanlığı (T.C.). 2013. İnsani tüketim amaçlı sular hakkında yönetmelikte değişiklik yapılmasına dair yönetmelik. Türkiye Halk Sağlığı Kurumu. Resmi Gazete No: 28580. Turkey.
  • United Nations Environment Programme (UNEP) 2010. Final Review of Scientific Information on Cadmium. United Nations Environment Programme, Chemicals Branch, DTIE, Geneva, Switzerland.
  • United States Environmental Protection Agency (US EPA). 2007. Framework for Metals Risk Assessment. EPA 120/R-07/001. U. S. Environmental Protection Agency, Washington, DC.
  • Wang, H., Z. Wu, B. Chen, M. He, and B. Hu. 2015. Chip-based array magnetic solid phase micro extraction on-line coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in cells. The Analyst 140 (16):5619–26. doi:10.1039/C5AN00736D.
  • World Health Organization (WHO). 2011. Cadmium in drinking-water, background document for development of WHO guidelines for drinking-water quality. WHO/SDE/WSH/03.04/80/Rev/1. Geneva.
  • World Health Organization (WHO). 2017. Guidelines for drinking-water quality: Fourth edition incorporating first addendum. ISBN 978-92-4-154995-0. Geneva.
  • Wu, C. H., D. Le, A. Mulchandani, and W. Chen. 2009. Optimization of a whole-cell cadmium sensor with a toggle gene circuit. Biotechnology Progress 25 (3):898–903. doi:10.1002/btpr.203.
  • Xu, T., D. M. Close, G. S. Sayler, and S. Ripp. 2013. Genetically modified whole-cell bioreporters for environmental assessment. Ecological Indicators 28:125–41. doi:10.1016/j.ecolind.2012.01.020.
  • Yoon, Y.,. S. Kim, Y. Chae, Y. Kang, Y. Lee, S. W. Jeong, and Y. J. An. 2016. Use of tunable whole-cell bioreporters to assess bioavailable cadmium and remediation performance in soils. PLOS One 11 (5):e0154506–16. doi:10.1371/journal.pone.0154506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.