343
Views
17
CrossRef citations to date
0
Altmetric
Preconcentration Techniques

Ultrasound Assisted Ferrofluid Dispersive Liquid Phase Microextraction Coupled with Flame Atomic Absorption Spectroscopy for the Determination of Cobalt in Environmental Samples

, &
Pages 378-393 | Received 01 Mar 2020, Accepted 03 May 2020, Published online: 14 May 2020

References

  • Abbott, A. P., D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed. 2004. Deep Eutectic Solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society 126 (29):9142–7. doi:10.1021/ja048266j.
  • Afzali, D., M. Afzali, and M. Ghanbarian. 2018. Preconcentration of trace amounts of cobalt (II) ions in water and agricultural products samples using of 5-(4-dimethylaminobenzylidene) rhodanin modified SBA-15 sorbent prior to FAAS determination. International Journal of Environmental Analytical Chemistry 98 (4):338–48. doi:10.1080/03067319.2018.1466877.
  • Dil, E. A., M. Ghaedi, and A. Asfaram. 2019. Application of hydrophobic deep eutectic solvent as the carrier for ferrofluid: A novel strategy for pre-concentration and determination of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization. Talanta 202:526–30. doi:10.1016/j.talanta.2019.05.027.
  • Alvand, M., and F. Shemirani. 2016. Fabrication of Fe3O4@graphene oxide core-shell nanospheres for ferrofluid-based dispersive solid phase extraction as exemplified for Cd (II) as a model analyte. Microchimica Acta 183 (5):1749–57. doi:10.1007/s00604-016-1805-8.
  • Baliza, P. X., L. S. G. Teixeira, and V. A. Lemos. 2009. A procedure for determination of cobalt in water samples after dispersive liquid–liquid microextraction. Microchemical Journal 93 (2):220–4. doi:10.1016/j.microc.2009.07.009.
  • Bilal, M., T. G. Kazi, H. I. Afridi, M. B. Arain, J. A. Baig, M. Khan, and N. Khan. 2016. Application of conventional and modified cloud point extraction for simultaneous enrichment of cadmium. lead and copper in lake water and fish muscles. Journal of Industrial and Engineering Chemistry 40:137–44. doi:10.1016/j.jiec.2016.06.015.
  • Cao, H., J. He, L. Deng, and X. Gao. 2009. Fabrication of cyclodextrin functionalized superparamagnetic Fe3O4/amino- silane core-shell nanoparticles via layer-by-layer method. Applied Surface Science 255 (18):7974–80. doi:10.1016/j.apsusc.2009.04.199.
  • Cardenas, S., and R. Lucena. 2017. Recent Advances in Extraction and Stirring Integrated Techniques. Separations 4 (1):6. doi:10.3390/separations4010006.
  • Chaiyamate, P., K. Seebunrueng, and S. Srijaranai. 2018. Vortex-assisted low density solvent and surfactant based dispersive liquid–liquid microextraction for sensitive spectrophotometric determination of cobalt. RSC Advances 8 (13):7243–51. doi:10.1039/C7RA11896A.
  • Farajzadeh, M. A., M. R. Afshar Mogaddam, and M. Aghanassa. 2016. Deep eutectic solvent-based dispersive liquid–liquid microextraction. Analytical Methods 8 (12):2576–83. doi:10.1039/C5AY03189C.
  • Filik, H., and A. A. Avan. 2017. Ionic liquid based dispersive liquid-liquid microextraction combined with magnetic-based dispersive micro-solid-phase extraction for determination of trace cobalt in water samples by FAAS. Current Analytical Chemistry 13 (6):456–63. doi:10.2174/1573411013666170307093452.
  • Florindo, C., L. C. Branco, and I. M. Marrucho. 2017. Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilibria 448:135–42. doi:10.1016/j.fluid.2017.04.002.
  • Fu, N., X. Liu, L. Li, B. Tang, and K. H. Row. 2017. Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer. Journal of Separation Science 40 (10):2286–91. doi:10.1002/jssc.201700146.
  • Ghoochani-Moghadam, A., M. Rajabi, M. Hemmati, and A. Asghari. 2017. Development of liquid phase microextraction based on effervescence-assisted fatty acid for determination of silver and cobalt ions using micro-sampling flame atomic absorption spectrometry. Journal of Molecular Liquids 242:1176–83. doi:10.1016/j.molliq.2017.07.038.
  • Gouda, A. A., A. M. Summan, and A. H. Amin. 2016. Development of cloud-point extraction method for preconcentration of trace quantities of cobalt and nickel in water and food samples. RSC Advances 6 (96):94048–57. doi:10.1039/C6RA20900A.
  • Haddad, Z., C. Abid, H. F. Oztop, and A. Mataoui. 2014. A review on how the researchers prepare their nanofluids. International Journal of Thermal Sciences 76:168–89. doi:10.1016/j.ijthermalsci.2013.08.010.
  • Hemmati, M., M. Rajabi, and A. Asghari. 2017. A twin purification/enrichment procedure based on two versatile solid/liquid extracting agents for efficient uptake of ultra-trace levels of lorazepam and clonazepam from complex bio-matrices. Journal of Chromatography. A 1524:1–12. doi:10.1016/j.chroma.2017.09.045.
  • Jamali, M. R., A. Firouzjah, and R. Rahnama. 2013. Solvent-assisted dispersive solid phase extraction. Talanta 116:454–9. doi:10.1016/j.talanta.2013.07.023.
  • Jamali, M. R., B. Soleimani, R. Rahnama, and S. H. A. Rahimi. 2017. Development of an in situ solvent formation microextraction and preconcentration method based on ionic liquids for the determination of trace cobalt (II) in water samples by flame atomic absorption spectrometry. Arabian Journal of Chemistry 10:S321–S327. doi:10.1016/j.arabjc.2012.08.004.
  • Karimi, M., A. M. Haji Shabani, and S. Dadfarnia. 2016. Deep eutectic solvent-mediated extraction for ligand-less preconcentration of lead and cadmium from environmental samples using magnetic nanoparticles. Microchimica Acta 183 (2):563–71. doi:10.1007/s00604-015-1671-9.
  • Khan, M., and M. Soylak. 2018. Magnetic solid phase extraction of lead, cadmium, and cobalt on magnetic carboxyl-modified nanodiamonds (MCNDs) from natural water samples and their determination by flame atomic absorption spectrometry. Atomic Spectroscopy 39:81–9.
  • Khan, M., T. G. Kazi, H. I. Afridi, M. Bilal, A. Akhtar, N. Ullah, S. Khan, and S. Talpur. 2017. Application of ultrasonically modified cloud point extraction method for simultaneous enrichment of cadmium and lead in sera of different types of gallstone patients. Ultrasonics Sonochemistry 39:313–20. doi:10.1016/j.ultsonch.2017.04.043.
  • Khezeli, T., A. Daneshfar, and R. Sahraei. 2015. Emulsification liquid-liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. Journal of Chromatography. A 1425:25–33. doi:10.1016/j.chroma.2015.11.007.
  • Koosha, E., M. Ramezani, and A. Niazi. 2018. Syringe-to-syringe-dispersive liquid–phase microextraction combined with flame atomic absorption spectrometry for pre-concentration and determination of cobalt with the aid of experimental design. International Journal of Environmental Analytical Chemistry 98 (6):506–19. doi:10.1080/03067319.2018.1480764.
  • Lamei, N., M. Ezoddin, M. S. Ardestani, and K. Abdi. 2017. Dispersion of magnetic graphene oxide nanoparticles coated with a deep eutectic solvent using ultrasound assistance for preconcentration of methadone in biological and water samples followed by GC-FID and GC-MS. Analytical and Bioanalytical Chemistry 409 (26):6113–21. doi:10.1007/s00216-017-0547-8.
  • Li, X., and K. H. Row. 2016. Development of deep eutectic solvents applied in extraction and separation. Journal of Separation Science 39 (18):3505–20. doi:10.1002/jssc.201600633.
  • Liu, L.,. W. Tang, B. Tang, D. Han, K. H. Row, and T. Zhu. 2017. Pipette-tip solid-phase extraction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water. Journal of Separation Science 40 (9):1887–95. doi:10.1002/jssc.201601436.
  • Liu, P., J. W. Hao, L. P. Mo, and Z. H. Zhang. 2015. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances 5 (60):48675–704. doi:10.1039/C5RA05746A.
  • Liu, X., Z. Ma, J. Xing, and H. Liu. 2004. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. Journal of Magnetism and Magnetic Materials 270 (1-2):1–6. doi:10.1016/j.jmmm.2003.07.006.
  • Osch, D. J. V., L. F. Zubeir, A. V. D. Bruinhorst, M. A. Rocha, and M. C. Kroon. 2015. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chemistry 17 (9):4518–21. doi:10.1039/C5GC01451D.
  • Ramandi, N. F., and F. Shemirani. 2015. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples. Talanta 131:404–11. doi:10.1016/j.talanta.2014.08.008.
  • Ramandi, N. F., F. Shemirani, and M. Davudabadi Farahani. 2014. Dispersive solid phase extraction of lead (II) using a silica nanoparticle-based ionic liquid ferrofluid. Microchimica Acta 181 (15-16):1833–41. doi:10.1007/s00604-014-1254-1.
  • Ruß, C., and B. König. 2012. Low melting mixtures in organic synthesis - an alternative to ionic liquids. Green Chemistry 14 (11):2969–82. doi:10.1039/c2gc36005e.
  • Shi, Z. G., Y. Zhang, and H. K. Lee. 2010. Ferrofluid-based liquid-phase microextraction. Journal of Chromatography. A 1217 (47):7311–5. doi:10.1016/j.chroma.2010.09.049.
  • Shirani, M., S. Habibollahi, and A. Akbari. 2019. Centrifuge-less deep eutectic solvent based magnetic nanofluid-linked air-agitated liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper, and arsenic in food samples and non-alcoholic beverages. Food Chemistry 281:304–11. doi:10.1016/j.foodchem.2018.12.110.
  • Troter, D. Z., Z. B. Todorović, D. R. Đokić-Stojanović, O. S. Stamenković, and V. B. Veljković. 2016. Application of ionic liquids and deep eutectic solvents in biodiesel production: A review. Renewable and Sustainable Energy Reviews 61:473–500. doi:10.1016/j.rser.2016.04.011.
  • Wang, H., L. Hu, X. Liu, S. Yin, R. Lu, S. Zhang, W. Zhou, and H. Gao. 2017. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples. Journal of Chromatography. A 1516:1–8. doi:10.1016/j.chroma.2017.07.073.
  • Wu, X., X. Li, M. Yang, H. Zeng, S. Zhang, R. Lu, H. Gao, and D. Xu. 2017. An ionic liquid-based nanofluid of titanium dioxide nanoparticles for effervescence-assisted dispersive liquid-liquid extraction for acaricide detection. Journal of Chromatography. A 1497:1–8. doi:10.1016/j.chroma.2017.03.005.
  • Xu, K., Y. Wang, X. Ding, Y. Huang, N. Li, and Q. Wen. 2016. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles. Talanta 148:153–62. doi:10.1016/j.talanta.2015.10.079.
  • Yousefi, S. M., and F. Shemirani. 2017. Carbon nanotube-based magnetic bucky gels in developing dispersive solid-phase extraction: Application in rapid speciation analysis of Cr (VI) and Cr (III) in water samples. International Journal of Environmental Analytical Chemistry 97 (11):1065–79. doi:10.1080/03067319.2017.1381236.
  • Yousefi, S. M., F. Shemirani, and S. A. Ghorbanian. 2017. Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: Application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique. Talanta 168:73–81. doi:10.1016/j.talanta.2017.03.020.
  • Yousefi, S. M., F. Shemirani, and S. A. Ghorbanian. 2018. Enhanced headspace single drop microextraction method using deep eutectic solvent based magnetic bucky gels: Application to the determination of volatile aromatic hydrocarbons in water and urine samples. Journal of Separation Science 41 (4):966–74. doi:10.1002/jssc.201700807.
  • Zarei, A. R., M. Nedaei, and S. A. Ghorbanian. 2017. Application of deep eutectic solvent based magnetic colloidal gel for dispersive solid phase extraction of ultra-trace amounts of some nitroaromatic compounds in water samples. Journal of Molecular Liquids 246:58–65. doi:10.1016/j.molliq.2017.09.039.
  • Zarei, A. R., M. Nedaei, and S. A. Ghorbanian. 2017. Deep eutectic solvent based magnetic nanofluid in the development of stir bar sorptive dispersive microextraction: An efficient hyphenated sample preparation for ultra-trace nitroaromatic explosives extraction in wastewater . Journal of Separation Science 40 (24):4757–64. doi:10.1002/jssc.201700915.
  • Zarei, A. R., M. Nedaei, and S. A. Ghorbanian. 2018. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples. Journal of Chromatography A 1553:32–42. doi:10.1016/j.chroma.2018.04.023.
  • Zeng, Q., Y. Wang, Y. Huang, X. Ding, J. Chen, and K. Xu. 2014. Deep eutectic solvents as novel extraction media for protein partitioning. The Analyst 139 (10):2565–73. doi:10.1039/c3an02235h.
  • Zhang, H., B. Tang, and K. H. Row. 2014. A green deep eutectic solvent-based ultrasound-assisted method to extract astaxanthin from shrimp byproducts. Analytical Letters 47 (5):742–9. doi:10.1080/00032719.2013.855783.
  • Zohrabi, P., M. Shamsipur, M. Hashemi, and B. Hashemi. 2016. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 160:340–6. doi:10.1016/j.talanta.2016.07.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.