499
Views
28
CrossRef citations to date
0
Altmetric
Voltammetry

Electrochemical Determination of Sunset Yellow Using an Electrochemically Prepared Graphene Oxide Modified – Pencil Graphite Electrode (EGO-PGE)

, &
Pages 394-416 | Received 31 Mar 2020, Accepted 06 May 2020, Published online: 24 May 2020

References

  • Aktas, A. H., and G. P. Ertokus. 2010. Spectral simultaneous determinatıon of tartrazine, allura red, sunset yellow and caramel in drınk sample by chemometric method. Analytical Chemistry 29 (2):107–16.
  • Allam, K. V., and G. P. Kumar. 2011. Colorants-the cosmetics for the pharmaceutical dosage forms. International Journal of Pharmacy and Pharmaceutical Sciences 3:13–21.
  • Alqarni, S. A., M. A. Hussein, and A. A. Ganash. 2018. Highly sensitive and selective electrochemical determination of Sunset Yellow in food products based on AuNPs/PANI-co-PoAN-co-PoT/GO/Au electrode. Chemistryselect 3 (46):13167–77. doi:10.1002/slct.201802528.
  • Alves, S. P., D. M. Brum, E. C. B. Andrade, and A. D. P. Netto. 2008. Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chemistry 107 (1):489–96. doi:10.1016/j.foodchem.2007.07.054.
  • Arvand, M., M. Zamani, and M. S. Ardaki. 2017. Rapid electrochemical synthesis of molecularly imprinted polymerson functionalized multi-walled carbon nanotubes for selective recognition of sunset yellow in food samples. Sensors and Actuators B: Chemical 243:927–39. doi:10.1016/j.snb.2016.12.077.
  • Arvas, M. B., O. Gorduk, M. Gencten, and Y. Sahin. 2019. Preparation of a novel electrochemical sensor for phosphate detection based on molybdenum blue modified poly(vinylchloride) coated pencil graphite electrode. Analytical Methods 11 (30):3874–81. doi:10.1039/C9AY01275C.
  • Benvidi, A., S. Abbasi, S. Gharaghani, M. D. Tezerjani, and S. Masoum. 2017. Spectrophotometric determination of synthetic colorants using PSO-GA-ANN. Food Chemistry 220:377–84. doi:10.1016/j.foodchem.2016.10.010.
  • Bessegato, G. G., M. F. Brugnera, and M. V. B. Zanoni. 2019. Electroanalytical sensing of dyes and colorants. Current Opinion in Electrochemistry 16:134–42. doi:10.1016/j.coelec.2019.05.008.
  • Chen, D., H. Feng, and J. Li. 2012. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 112 (11):6027–53. doi:10.1021/cr300115g.
  • Ding, Z., P. Deng, Y. Wu, Y. Tian, G. Li, J. Liu, and Q. He. 2019. A novel modified electrode for detection of the food colorant Sunset Yellow based on nanohybrid of MnO2 nanorods-decorated electrochemically reduced graphene oxide. Molecules 24 (6):1178. doi:10.3390/molecules24061178.
  • Dokur, E., O. Gorduk, and Y. Sahin. 2020. Differential pulse voltammetric determination of folic acid using a poly(cystine) modified pencil graphite electrode. Analytical Letters. doi:10.1080/00032719.2020.1728540.
  • Dorraji, P. S., and F. Jalali. 2017. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food Chemistry 227:73–7. doi:10.1016/j.foodchem.2017.01.071.
  • European Food Safety Authority. 2014. Reconsideration of the temporary ADI and refined exposure assessment for Sunset Yellow FCF (E 110). European Food Safety Authority Journal 12 (7):3765. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2014.3765.
  • Fogg, A. G., and D. Bhanot. 1980. Effect of tetraphenylphosphonium chloride on D.C. and differential-pulse polarograms of synthetic food colouring matters. The Analyst 105 (1248):234–40. doi:10.1039/an9800500234.
  • Gholivand, M. B., N. Karimian, and M. Torkashvand. 2015. A graphene-based electrochemical sensor for sensitive determination of cyanazine. Journal of Analytical Chemistry 70 (3):384–91. doi:10.1134/S1061934815030077.
  • Gonzalez, A. P., O. G. Beltran, and E. Nagles, 2018. Detection of Sunset Yellow by adsorption voltammetry at glassy carbon electrode modified with chitosan. International Journal of Electrochemical Science 13:5005–15. doi:10.20964/2018.05.35.
  • Gorduk, O. 2020. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube – over-oxidized poly(3,4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters 53 (7):1034–52. doi:10.1080/00032719.2019.1693583.
  • Gursu, H., M. Gencten, and Y. Sahin. 2017. One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. Electrochimica Acta 243:239–49.
  • Gursu, H., M. Gencten, and Y. Sahin. 2018. Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery. Ionics 24:3641–54.
  • Heidarizadi, E., and R. Tabaraki. 2016. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations. Talanta 148:237–46. doi:10.1016/j.talanta.2015.10.075.
  • Hummers, W. S., and R. E. Offeman. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80 (6):1339. doi:10.1021/ja01539a017.
  • Kang, X., J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin. 2010. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81 (3):754–759. doi:10.1016/j.talanta.2010.01.009.
  • Karabiberoglu, S. U. 2019. Sensitive voltammetric determination of bisphenol A based on a glassy carbon electrode modified with copper oxide‐zinc oxide decorated on graphene oxide. Electroanalysis 31:91–102.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2017a. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synthetic Metals 233:111–118. doi:10.1016/j.synthmet.2017.09.009.
  • Koyun, O., H. Gursu, S. Gorduk, and Y. Sahin. 2017b. Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode. International Journal of Electrochemical Science 12:6428–6444. doi:10.20964/2017.07.41.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2018. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russian Journal of Electrochemistry 54 (11):796–808. doi:10.1134/S1023193518110046.
  • Koyun, O., S. Gorduk, M. Gencten, and Y. Sahin. 2019. A novel copper (II) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New Journal of Chemistry 43 (1):85–92. doi:10.1039/C8NJ03721C.
  • Koyun, O., and Y. Sahin. 2018a. Poly(L-cysteine) modified pencil graphite electrode for determination of Sunset Yellow in food and beverage samples by differential pulse voltammetry. International Journal of Electrochemical Science 13:159–174. doi:10.20964/2018.01.40.
  • Koyun, O., and Y. Sahin. 2018b. Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: Application in food and water samples. Ionics 24 (10):3187–3197. doi:10.1007/s11581-017-2429-7.
  • Li, Y., J. Zhou, J. Song, X. Liang, Z. Zhang, D. Men, D. Wang, and X. E. Zhang. 2019. Chemical nature of electrochemical activation of carbon electrodes. Biosensors and Bioelectronics 144:111534. doi:10.1016/j.bios.2019.111534.
  • Lipskikh, O. I., E. I. Korotkova, Y. P. Khristunova, J. Barek, and B. Kratochvil. 2018. Sensor for voltammetric determination of food azo dyes – A critical review. Electrochimica Acta 260:974–985. doi:10.1016/j.electacta.2017.12.027.
  • Liu, F. J., C. T. Liu, W. Li, and A. N. Tang. 2015. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase. Talanta 132:366–372. doi:10.1016/j.talanta.2014.09.014.
  • Llamas, N. E., M. Garrido, M. S. D. Nezio, and B. S. F. Band. 2009. Second order advantage in the determination of amaranth, sunset yellow FCF and tartrazine by UV–vis and multivariate curve resolution-alternating least squares. Analytica Chimica Acta 655 (1-2):38–42. doi:10.1016/j.aca.2009.10.001.
  • Llanos, J. P., O. G. Beltran, J. A. Calderon, J. J. H. Murillo, E. Nagles, and J. J. Hurtado. 2019. Simultaneous determination of tartrazine, sunset yellow and allura red in foods using a new cobalt-decorated carbon paste electrode. Journal of Electroanalytical Chemistry 852:113517. doi:10.1016/j.jelechem.2019.113517.
  • Magerusan, L., F. Pogacean, M. Coros, C. Socaci, S. Pruneanu, C. Leostean, and I. O. Pana. 2018. Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection. Electrochimica Acta 283:578–589. doi:10.1016/j.electacta.2018.06.203.
  • Majidi, M. R., R. F. B. Baj, and A. Naseri. 2013. Carbon nanotube–ionic liquid (CNT–IL) nanocamposite modified sol-gel derived carbon-ceramic electrode for simultaneous determination of Sunset Yellow and tartrazine in food samples. Food Analytical Methods 6 (5):1388–1397. doi:10.1007/s12161-012-9556-6.
  • Mani, V., A. P. Periasamy, and S. M. Chen. 2012. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochemistry Communications 17:75–78. doi:10.1016/j.elecom.2012.02.009.
  • Martin, F., J. M. Oberson, M. Meschiari, and C. Munari. 2016. Determination of 18 water-soluble artificial dyes by LC–MS in selected matrices. Food Chemistry 197:1249–1255. doi:10.1016/j.foodchem.2015.11.067.
  • Medeiros, R. A., B. C. Lourencao, R. C. R. Filho, and O. F. Filho. 2012. Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode. Talanta 97:291–297. doi:10.1016/j.talanta.2012.04.033.
  • Minioti, K. S., C. F. Sakellariou, and N. S. Thomaidis. 2007. Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector. Analytica Chimica Acta 583 (1):103–110. doi:10.1016/j.aca.2006.10.002.
  • Pogacean, F., M. Coros, V. Mirel, L. Magerusan, L. B. Tudoran, A. Vulpoi, R. I. S. Staden, and S. Pruneanu. 2019. Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions: Application to Sunset Yellow voltammetric detection. Microchemical Journal 147:112–120. doi:10.1016/j.microc.2019.03.007.
  • Qin, C., W. Guo, Y. Liu, Z. Liu, J. Qiu, and J. Peng. 2017. A novel electrochemical sensor based on graphene oxide decorated with silver nanoparticles–molecular imprinted polymers for determination of Sunset Yellow in soft drinks. Food Analytical Methods 10 (7):2293–2301. doi:10.1007/s12161-016-0753-6.
  • Qiu, X., L. Lu, J. Leng, Y. Yu, W. Wang, M. Jiang, and L. Bai. 2016. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and tartrazine. Food Chemistry 190:889–895. doi:10.1016/j.foodchem.2015.06.045.
  • Rosales, P. S., C. T. Neira, and J. A. Squella. 2017. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs. Sensors and Actuators B: Chemical 240:1257–1264. doi:10.1016/j.snb.2016.08.135.
  • Rovina, K., L. A. Acung, S. Siddiquee, J. H. Akanda, and S. M. Shaarani. 2017. Extraction and analytical methods for determination of Sunset Yellow (E110)—A review. Food Analytical Methods 10 (3):773–787. doi:10.1007/s12161-016-0645-9.
  • Sass, D. T., E. S. M. Mouele, and N. Ross. 2019. Nano silver-iron-reduced graphene oxide modified titanium dioxide photocatalytic remediation system for organic dye. Environments 6 (9):106. doi:10.3390/environments6090106.
  • Siburian, R., H. Sihotang, S. Lumban Raja, M. Supeno, and C. Simanjuntak. 2018. New route to synthesize of graphene nano sheets. Oriental Journal of Chemistry 34 (1):182–187. doi:10.13005/ojc/340120.
  • Smolinske, S. C. 1992. Handbook of food, drug, and cosmetic excipients. Boca Raton, FL: CRC Press.
  • Tahtaisleyen, S., O. Gorduk, and Y. Sahin. 2020. Electrochemical determination of tartrazine using a graphene/poly(L-phenylalanine) modified pencil graphite electrode. Analytical Letters 53 (11):1683–1703. doi:10.1080/00032719.2020.1716242.
  • The Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives. 2015. General standard for food additives codex stan 192-1995. Codex Alimentarius International Food Standards. http://www.fao.org/gsfaonline/docs/CXS_192e.pdf
  • Tran, Q. T., T. T. Phung, Q. T. Nguyen, T. G. Le, and C. Lagrost. 2019. Highly sensitive and rapid determination of sunset yellow in drinks using a low-cost carbon material-based electrochemical sensor. Analytical and Bioanalytical Chemistry 411 (28):7539–7549. doi:10.1007/s00216-019-02155-9.
  • Vladislavic, N., M. Buzuk, I. S. Roncevic, and S. Briniz. 2018. Electroanalytical methods for determination of Sunset Yellow - A review. International Journal of Electrochemical Science 13:7008–7019.
  • Wang, D. W., F. Li, Z. S. Wu, W. Ren, and H. M. Cheng. 2009. Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers. Electrochemistry Communications 11 (9):1729–1732. doi:10.1016/j.elecom.2009.06.034.
  • Wang, J., B. Yang, H. Wang, P. Yang, and Y. Du. 2015. Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Analytica Chimica Acta 893:41–48. doi:10.1016/j.aca.2015.08.042.
  • Wei, Z., D. E. Barlow, and P. E. Sheehan. 2008. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Letters 8 (10):3141–3145.
  • Wu, X., H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, and H. Zhao. 2014. Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery. Electrochimica Acta 138:264–269. doi:10.1016/j.electacta.2014.06.124.
  • Xing, Y., M. Meng, H. Xue, T. Zhang, Y. Yin, and R. Xi. 2012. Development of a polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sunset Yellow FCF in food samples. Talanta 99:125–131. doi:10.1016/j.talanta.2012.05.029.
  • Yamaguchi, H., G. Eda, C. Mattevi, H. Kim, and M. Chhowalla. 2010. Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano 4 (1):524–528. doi:10.1021/nn901496p.
  • Yi, J., L. Zeng, Q. Wu, L. Yang, and T. Xie. 2018. Sensitive simultaneous determination of synthetic food colorants in preserved fruit samples by capillary electrophoresis with contactless conductivity detection. Food Analytical Methods 11 (6):1608–1618. doi:10.1007/s12161-017-1141-6.
  • Zhang, K., P. Luo, J. Wu, W. Wang, and B. Ye. 2013. Highly sensitive determination of Sunset Yellow in drink using a poly (L-cysteine) modified glassy carbon electrode. Analytical Methods 5 (19):5044. doi:10.1039/c3ay40873f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.