154
Views
1
CrossRef citations to date
0
Altmetric
Fluorescence

Highly Selective Fluorescent 4-(4-(Diethylamino)-2-Hydroxystyryl)-1-Methylpyridine Iodide and Nitrobenzofurazan Based Probe for Cysteine with Application in Living Cells

, , , &
Pages 417-429 | Received 17 Mar 2020, Accepted 06 May 2020, Published online: 19 May 2020

References

  • Benesch, R. E., and R. Benesch. 1955. The acid strength of the -SH group in cysteine and related compounds. Journal of the American Chemical Society 77 (22):5877–81. doi:10.1021/ja01627a030.
  • Cao, M., H. Chen, D. Chen, Z. Xu, S. Liu, X. Chen, and J. Yin. 2016. Naphthalimide-based fluorescent probe for selectively and specifically detecting glutathione in the lysosomes of living cells. Chemical Communications (Cambridge, England) 52 (4):721–4. doi:10.1039/c5cc08328a.
  • Chen, Q., J. F. Yang, Y. H. Li, J. Zheng, and R. H. Yang. 2015. Sensitive and rapid detection of endogenous hydrogen sulfide distributing in different mouse viscera via a two-photon fluorescent probe. Analytica Chimica Acta 896:128–36. doi:10.1016/j.aca.2015.05.040.
  • Chen, Y., T. Parr, A. E. Holmes, and K. Nakanishi. 2008. Porphyrinmaleimides: Towards thiol probes for cysteine residues in proteins. Bioconjugate Chemistry 19 (1):5–9. doi:10.1021/bc700267f.
  • Cheng, T. Y., W. M. Huang, D. Gao, Z. Yang, C. J. Zhang, H. X. Zhang, J. J. Zhang, H. Li, and X. F. Yang. 2019. Michael addition/S,N-intramolecular rearrangement sequence enables selective fluorescence detection of cysteine and homocysteine. Analytical Chemistry 91 (16):10894–900. doi:10.1021/acs.analchem.9b02814.
  • Ding, S. S., and G. Q. Feng. 2016. Smart probe for rapid and simultaneous detection and discrimination of hydrogen sulfide, cysteine/homocysteine, and glutathione. Sensors and Actuators B: Chemical 235:691–7. doi:10.1016/j.snb.2016.05.146.
  • Dong, F. D., H. Y. Lai, Y. Liu, Q. H. Li, H. H. Chen, S. M. Jia, J. Y. Zhang, and Y. P. Huo. 2020. Highly selective isomer fluorescent probes for distinguishing homo-/cysteine from glutathione based on AIE. Talanta 206:120177–85. doi:10.1016/j.talanta.2019.120177.
  • Fan, L., W. J. Zhang, X. D. Wang, W. J. Dong, Y. L. Tong, C. Dong, and S. M. Shuang. 2019. A two-photon ratiometric fluorescent probe for highly selective sensing of mitochondrial cysteine in live cells. The Analyst 144 (2):439–47. doi:10.1039/C8AN01908H.
  • Fu, Z., X. Han, Y. Shao, J. Fang, Z. Zhang, Y. Wang, and Y. Peng. 2017. Fluorescein-based chromogenic and ratiometric Fluorescence Probe for Highly Selective Detection of Cysteine and Its Application in Bioimaging. Analytical Chemistry 89 (3):1937–44. doi:10.1021/acs.analchem.6b04431.
  • He, L., X. Yang, K. Xu, and W. Lin. 2017. Improved aromatic substitution-rearrangement-based ratiometric fluorescent cysteine-specific probe and its application of real-time imaging under oxidative stress in living zebrafish. Analytical Chemistry 89 (17):9567–73. doi:10.1021/acs.analchem.7b02649.
  • Hu, G. D., H. Y. Jia, L. N. Zhao, D. H. Cho, and J. G. Fang. 2019. Small molecule fluorescent probes of protein vicinal dithiols. Chinese Chemical Letters 30 (10):1704–16. doi:10.1016/j.cclet.2019.06.039.
  • Hu, Q. H., C. M. Yu, X. T. Xia, F. Zeng, and S. Z. Wu. 2016. A fluorescent probe for simultaneous discrimination of GSH and Cys/Hcy in human serum samples via distinctly-separated emissions with independent excitations. Biosensors Bioelectronics 81:41–348. doi:10.1016/j.bios.2016.03.011.
  • Hua, Y., Q. Wei, G. Wu, Z. B. Sun, and Y. J. Shang. 2020. Fluorescent determination of calcium ion using a coumarinyl pyrazoline scaffold and its application in living cells. Analytical Letters 53 (6):960–72. doi:10.1080/00032719.2019.1687508.
  • Huang, Y. F., Y. B. Zhang, F. J. Huo, Y. M. Liu, and C. X. Yin. 2019. Dual-channel red fluorescent probe for detection of Cys/Hcy and GSH in plants. Sensors and Actuators B: Chemical 301:127123–30. doi:10.1016/j.snb.2019.127123.
  • Huang, Z., C. Y. Wu, Y. Q. Li, Z. L. Zhou, R. H. Xie, X. Pang, H. Xu, H. T. Li, and Y. Y. Zhang. 2019. A fluorescent probe for the specific detection of cysteine in human serum samples†. Analytical Methods 11 (26):3280–5. doi:10.1039/C9AY00659A.
  • Jung, H. S., J. H. Han, T. Pradhan, S. Kim, S. W. Lee, J. L. Sessler, T. W. Kim, C. Kang, and J. S. Kim. 2012. A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33 (3):945–53. doi:10.1016/j.biomaterials.2011.10.040.
  • Kang, Y. F., H. X. Qiao, Y. L. Meng, Z. H. Xin, L. P. Ge, M. Y. Dai, J. J. Xu, and C. H. Zhang. 2017. Selective detection of cysteine over homocysteine and glutathione by a simple and effective probe. Analytical Methods 9 (11):1707–9. doi:10.1039/C7AY00219J.
  • Kemp, M., Y. M. Go, and D. P. Jones. 2008. Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology. Free Radical Biology & Medicine 44 (6):921–37. doi:10.1016/j.freeradbiomed.2007.11.008.
  • Liu, J., M. X. Liu, H. X. Zhang, X. H. Wei, J. J. Wang, M. Xian, and W. Guo. 2019. Exploring cysteine regulation in cancer cell survival with a highly specific “Lock and Key” fluorescent probe for cysteine. Chemical Science 10 (43):10065–71. doi:10.1039/c9sc02618e.
  • Liu, J., Y. Q. Sun, Y. Huo, H. Zhang, L. Wang, P. Zhang, D. Song, Y. Shi, and W. Guo. 2014. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. Journal of the American Chemical Society 136 (2):574–7. doi:10.1021/ja409578w.
  • Long, Z., L. Chen, Y. C. Dang, D. G. Chen, X. D. Lou, and F. Xia. 2019. An ultralow concentration of two-photon fluorescent probe for rapid and selective detection of lysosomal cysteine in living cells. Talanta 204:762–8. doi:10.1016/j.talanta.2019.06.064.
  • Lu, J. X., Y. C. Song, W. Shi, X. H. Li, and H. M. Ma. 2012. A long-wavelength fluorescent probe for imaging reduced glutathione in live cells. Sensors and Actuators B: Chemical 161 (1):615–20. doi:10.1016/j.snb.2011.11.009.
  • Mao, Z., M. Wang, J. Liu, L.-J. Liu, S. M.-Y. Lee, C.-H. Leung, and D.-L. Ma. 2016. A long lifetime switch-on iridium(III) chemosensor for the visualization of cysteine in live zebrafish. Chemical Communications (Cambridge, England) 52 (24):4450–3. doi:10.1039/c6cc01008c.
  • Niu, H. W., B. W. Ni, K. K. Chen, X. P. Yang, W. B. Cao, Y. Ye, and Y. F. Zhao. 2019. A long-wavelength-emitting fluorescent probe for simultaneous discrimination of H2S/Cys/GSH and its bio-imaging applications. Talanta 196:145–52. doi:10.1016/j.talanta.2018.12.031.
  • Niu, L. Y., H. R. Zheng, Y. Z. Chen, L. Z. Wu, C. H. Tung, and Q. Z. Yang. 2014. Fluorescent sensors for selective detection of thiols: Expanding the intramolecular displacement based mechanism to new chromophores. The Analyst 139 (6):1389–95. doi:10.1039/c3an01849k.
  • Niu, L. Y., Q. Q. Yang, H. R. Zheng, Y. Z. Chen, L. Z. Wu, C. H. Tung, and Q. Z. Yang. 2015. BODIPY-based fluorescent probe for the simultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths. RSC Advances 5 (6):3959–64. doi:10.1039/C4RA13526A.
  • Niu, W. F., L. Guo, Y. H. Li, S. M. Shuang, C. Dong, and M. S. Wong. 2016. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Analytical Chemistry 88 (3):1908–14. doi:10.1021/acs.analchem.5b04329.
  • Pires, M. M., and J. Chmielewski. 2008. Fluorescence imaging of cellular glutathione using a latent rhodamine. Organic Letters 10 (5):837–40. doi:10.1021/ol702769n.
  • Qiu, X. Y., X. J. Jiao, C. Liu, D. S. Zheng, K. Huang, Q. Wang, S. He, L. C. Zhao, and X. S. Zeng. 2017. A selective and sensitive fluorescent probe for homocysteine and its application in living cells. Dyes and Pigments 140:212–21. doi:10.1016/j.dyepig.2017.01.047.
  • Reddie, K. G., and K. S. Carroll. 2008. Expanding the functional diversity of proteins through cysteine oxidation. Current Opinion in Chemical Biology 12 (6):746–54. doi:10.1016/j.cbpa.2008.07.028.
  • Van de Bittner, G. C., C. R. Bertozzi, and C. J. Chang. 2013. Strategy for dual-analyte luciferin imaging: In vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. Journal of the American Chemical Society 135 (5):1783–95. doi:10.1021/ja309078t.
  • Wang, F., L. Zhou, C. Zhao, R. Wang, Q. Fei, S. Luo, Z. Guo, H. Tian, and W.-H. Zhu. 2015. A dual-response BODIPY-based fluorescent probe for the discrimination of glutathione from cystein and homocystein. Chemical Science 6 (4):2584–9. doi:10.1039/c5sc00216h.
  • Wang, P., Y. Wang, N. Li, J. X. Huang, Q. Q. Wang, and Y. Q. Gu. 2017. A novel DCM-NBD conjugate fluorescent probe for discrimination of Cys/Hcy from GSH and its bioimaging applications in living cells and animals. Sensors and Actuators B: Chemical 245:297–304. doi:10.1016/j.snb.2017.01.127.
  • Xiang, H.-J., H. P. Tham, M. D. Nguyen, S. Z. Fiona Phua, W. Q. Lim, J.-G. Liu, and Y. Zhao. 2017. An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells. Chemical Communications (Cambridge, England) 53 (37):5220–3. doi:10.1039/c7cc01814b.
  • Xu, S., J. L. Zhou, X. C. Dong, W. L. Zhao, and Q. G. Zhu. 2019. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission. Analytica Chimica Acta 1074:123–30. doi:10.1016/j.aca.2019.05.008.
  • Yang, X. F., Q. Huang, Y. G. Zhong, Z. H. Li, H. Li, M. Lowry, J. O. Escobedo, and R. M. Strongin. 2014. A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine. Chemical Science 5 (6):2177–83. doi:10.1039/C4SC00308J.
  • Yang, Y. S., Z. H. Yuan, X. P. Zhang, J. F. Xu, P. C. Lv, and H. L. Zhu. 2019. A selective fluorescent sensor for cysteine detection with potential as a white light emitting fluorophore in living cell imaging. Journal of Materials Chemistry B 7 (18):2911–4. doi:10.1039/C9TB00273A.
  • Yue, Y. K., F. J. Huo, P. Ning, Y. B. Zhang, J. B. Chao, X. M. Meng, and C. X. Yin. 2017. Dual-Site Fluorescent Probe for Visualizing the Metabolism of Cys in Living Cells. Journal of the American Chemical Society 139 (8):3181–5. doi:10.1021/jacs.6b12845.
  • Zhai, L. H., Z. L. Shi, Y. Y. Tu, and S. Z. Pu. 2019. A dual emission fluorescent probe enables simultaneous detection and discrimination of Cys/Hcy and GSH and its application in cell imaging. Dyes and Pigments 165:164–71. doi:10.1016/j.dyepig.2019.02.010.
  • Zhang, H., X. Xia, H. Zhao, G. N. Zhang, D. Y. Jiang, X. Y. Xue, and J. Zhang. 2019. A near-infrared fluorescent probe based on SNAr reaction for H2S/GSH detection in living cells and zebrafish. Dyes and Pigments 163:183–9. doi:10.1016/j.dyepig.2018.11.050.
  • Zhang, R. R., J. F. Zhang, S. Q. Wang, Y. L. Cheng, J. Y. Miao, and B. X. Zhao. 2015. Novel pyrazoline-based fluorescent probe for detecting thiols and its application in cells. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 137:450–5. doi:10.1016/j.saa.2014.08.108.
  • Zhang, Y. P., Y. Y. Dong, Y. S. Yang, H. C. Guo, B. X. Cao, and S. Q. Sun. 2017. A new pyrazoline-based probe of quenched fluorescent reversible recognition for Cu2+ and its application in cells. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 177:147–52. doi:10.1016/j.saa.2017.01.042.
  • Zhang, Y., X. Shao, Y. Wang, F. Pan, R. Kang, F. Peng, Z. Huang, W. Zhang, and W. Zhao. 2015. Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chemical Communications (Cambridge, England) 51 (20):4245–8. doi:10.1039/C4CC08687B.
  • Zhu, H. C., C. Y. Liu, R. F. Yuan, R. K. Wang, H. M. Zhang, Z. L. Li, P. Jia, B. C. Zhu, and W. L. Sheng. 2019. A simple highly specific fluorescent probe for simultaneous discrimination of cysteine/homocysteine and glutathione/hydrogen sulfide in living cells and zebrafish using two separated fluorescence channels under single wavelength excitation. The Analyst 144 (14):4258–65. doi:10.1039/c9an00818g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.