526
Views
6
CrossRef citations to date
0
Altmetric
Gas Chromatography

Characterization of the Zirconium Metal-Organic Framework (MOF) UiO-66-NH2 for the Decomposition of Nerve Agents in Solid-State Conditions Using Phosphorus-31 Solid State-Magic Angle Spinning Nuclear Magnetic Resonance (31P SS-MAS NMR) and Gas Chromatography – Mass Spectrometry (GC-MS)

, , , &
Pages 468-480 | Received 27 Feb 2020, Accepted 09 May 2020, Published online: 24 May 2020

References

  • Bai, Y., Y. Dou, L.-H. Xie, W. J. R. Rutledge, H. Li, and H.-C. Zhou. 2016. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chemical Society Reviews 45 (8):2327–67. doi:10.1039/c5cs00837a.
  • Bandosz, T. J., M. Laskoski, J. Mahle, G. Mogilevsky, G. W. Peterson, J. A. Rossin, and G. W. Wagner. 2012. Reactions of VX, GD, and HD with Zr(OH)4: Near instantaneous decontamination of VX. The Journal of Physical Chemistry C 116 (21):11606–14. doi:10.1021/jp3028879.
  • Barba-Bon, A., R. Martínez-Mánez, F. Sancenón, A. M. Costero, S. Gil, F. Pérez-Pla, and E. Llopis. 2015. Towards the design of organocatalysts for nerve agents remediation: The case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives. Journal of Hazardous Materials 298:73–82. doi:10.1016/j.jhazmat.2015.04.083.
  • Bartelt-Hunt, S. L., M. A. Barlaz, D. R. U. Knappe, and P. Kjeldsen. 2006. Fate of chemical warfare agents and toxic industrial chemicals in landfills. Environmental Science & Technology 40 (13):4219–25. doi:10.1021/es052400y.
  • de Koning, M. C., M. van Grol, and T. Breijaert. 2017. Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks UiO-66-NH2, MOF-808, NU-1000, and PCN-777. Inorganic Chemistry 56 (19):11804–9. doi:10.1021/acs.inorgchem.7b01809.
  • Ghanem, E., Y. Li, C. Xu, and F. M. Raushel. 2007. Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX. Biochemistry 46 (31):9032–40. doi:10.1021/bi700561k.
  • Gil-San-Millan, R., E. López-Maya, M. Hall, N. M. Padial, G. W. Peterson, J. B. DeCoste, L. M. Rodríguez-Albelo, J. E. Oltra, E. Barea, and J. A. R. Navarro. 2017. Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites. ACS Applied Materials & Interfaces 9 (28):23967–73. doi:10.1021/acsami.7b06341.
  • Greenfield, R. A., L. N. Slater, M. S. Bronze, B. R. Brown, R. Jackson, J. J. Iandolo, and J. B. Hutchins. 2002. Microbiological, biological, and chemical weapons of warfare and terrorism. The American Journal of the Medical Sciences 323 (6):326–40. doi:10.1097/00000441-200206000-00005.
  • Gunderson, C. H., C. R. Lehmann, F. R. Sidell, and B. Jabbari. 1992. Nerve agents: A review. Neurology 42 (5):946–50. doi:10.1212/wnl.42.5.946.
  • Islamoglu, T., M. A. Ortuno, E. Proussaloglou, A. J. Howarth, N. A. Vermeulen, A. Atilgan, A. M. Asiri, C. J. Cramer, and O. K. Farha. 2018. Presence versus proximity: The role of pendant amines in the catalytic hydrolysis of a nerve agent simulant. Angewandte Chemie 130 (7):1967–71. doi:10.1002/ange.201712645.
  • Jokanović, M. 2009. Handbook of toxicology of chemical warfare agents: Chapter 52-metabolism of warfare nerve agents. Amsterdam, The Netherlands: Academic Press, Elsevier Inc, 799–810.
  • Jung, H., and K. C. Lim. 2016. Fate and degradation of the chemical warfare agent soman on sands. Environmental Chemistry Letters 14 (3):367–72. doi:10.1007/s10311-016-0575-1.
  • Katz, M. J., Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha. 2013. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications (Cambridge, England) 49 (82):9449–51. doi:10.1039/c3cc46105j.
  • Katz, M. J., R. C. Klet, S.-Y. Moon, J. E. Mondloch, J. T. Hupp, and O. K. Farha. 2015. One step backward is two steps forward: Enhancing the hydrolysis rate of UiO-66 by decreasing [OH-]. ACS Catalysis 5 (8):4637–42. doi:10.1021/acscatal.5b00785.
  • Lennon, P. J., S. G. Vulfson, and E. Civade. 1999. New preparations of cyanophosphonate salts. The Journal of Organic Chemistry 64 (8):2958–61. doi:10.1021/jo982221h.
  • Lu, W., Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle, III, et al. 2014. Tuning the structure and function of metal-organic frameworks via linker design. Chemical Society Reviews 43 (16):5561–93. doi:10.1039/c4cs00003j.
  • Luu, C. L., T. T. V. Nguyen, T. Nguyen, and T. C. Hoang. 2015. Synthesis, characterization and adsorption ability of UiO-66-NH2. Advances in Natural Sciences: Nanoscience and Nanotechnology 6 (2):025004. 025004 (pp). doi:10.1088/2043-6262/6/2/025004.
  • Millard, C. B., G. Kryger, A. Ordentlich, H. M. Greenblatt, M. Harel, M. L. Raves, Y. Segall, D. Barak, A. Shafferman, I. Silman, et al. 1999. Crystal structures of aged phosphonylated acetylcholinesterase: Nerve agent reaction products at the atomic level. Biochemistry 38 (22):7032–9. doi:10.1021/bi982678l.
  • Mizayanov, V. 1995. Dismantling the Soviet/Russian chemical weapons complex: An insider’s view. Global Proliferation of Weapons of Mass Destruction: Hearings Before the Permanent Subcommittee on Investigations of the Committee on Governmental Affairs, 104th Cong. 393.
  • Mondloch, J. E., M. J. Katz, W. C. I. III, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, et al. 2015. Destruction of chemical warfare agents using metal-organic frameworks. Nature Materials 14 (5):512–6. doi:10.1038/nmat4238.
  • Moon, S.-Y., Y. Liu, J. T. Hupp, and O. K. Farha. 2015. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. Angewandte Chemie (International ed. in English) 54 (23):6795–9. doi:10.1002/anie.201502155.
  • Moon, S.- Y., E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha. 2016. Detoxification of chemical warfare agents using a Zr6 -based metal-organic framework/polymer mixture. Chemistry (Weinheim an der Bergstrasse, Germany) 22 (42):14864–8. doi:10.1002/chem.201603976.
  • Moon, S.-Y., W. G. Wagner, J. E. Mondloch, G. W. Peterson, J. B. DeCoste, J. T. Hupp, and O. K. Farha. 2015. Effective, facile, and selective hydrolysis of the chemical warfare agent VX using Zr6-based metal-organic frameworks. Inorganic Chemistry 54 (22):10829–33. doi:10.1021/acs.inorgchem.5b01813.
  • Moshiri, M., E. Darchini-Maragheh, and M. Balali-Mood. 2012. Advances in toxicology and medical treatment of chemical warfare nerve agents. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences 20 (1):81–24. doi:10.1186/2008-2231-20-81.
  • Organization for the Prohibition of Chemical Weapons (OPCW). 2014. Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction. https://www.opcw.nl.
  • Peterson, G. W., M. R. Destefano, S. J. Garibay, A. Ploskonka, M. McEntee, M. Hall, C. J. Karwacki, J. T. Hupp, and O. K. Farha. 2017. Optimizing toxic chemical removal through defect-induced UiO-66-NH2 metal-organic framework. Chemistry (Weinheim an der Bergstrasse, Germany) 23 (63):15913–6. doi:10.1002/chem.201704525.
  • Ren, X., J. Li, X. Tan, and X. Wang. 2013. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions (Cambridge, England : 2003) 42 (15):5266–74. doi:10.1039/c3dt32969k.
  • Ryu, S. G., M.-K. Kim, M. Park, S. O. Jang, S. H. Kim, and H. Jung. 2019. Availability of Zr-based MOFs for the degradation of nerve agents in all humidity conditions. Microporous and Mesoporous Materials 274:9–16. doi:10.1016/j.micromeso.2018.07.027.
  • Stassen, I., B. Bueken, H. Reinsch, J. F. M. Oudenhoven, D. Wouters, J. Hajek, V. Van Speybroeck, N. Stock, P. M. Vereecken, R. Van Schajik, et al. 2016. Towards metal-organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection. Chemical Science 7 (9):5827–32. doi:10.1039/c6sc00987e.
  • Troya, D. 2016. Reaction mechanism of nerve-agent decomposition with Zr-based metal organic frameworks. The Journal of Physical Chemistry C 120 (51):29312–23. doi:10.1021/acs.jpcc.6b10530.
  • Wagner, G. W., P. W. Bartram, O. Koper, and K. J. Klabunde. 1999. Reactions of VX, GD, and HD with nanosize MgO. The Journal of Physical Chemistry B 103 (16):3225–8. doi:10.1021/jp984689u.
  • Wagner, G. W., O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde. 2000. Reactions of VX, GD, and HD with nanosized CaO: Autocatalytic dehydrohalogenation of HD. The Journal of Physical Chemistry B 104 (21):5118–23. doi:10.1021/jp000101j.
  • Wang, H., J. J. Mahle, T. M. Tovar, G. W. Peterson, M. G. Hall, J. B. DeCoste, J. H. Buchanan, and C. J. Karwacki. 2019. Solid-phase detoxification of chemical warfare agents using zirconium-based metal organic frameworks and the moisture effects: Analyze via digestion. ACS Applied Materials & Interfaces 11 (23):21109–16. doi:10.1021/acsami.9b04927.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.