203
Views
8
CrossRef citations to date
0
Altmetric
Natural Product Analysis

Rapid Screening of Phenolic Compounds from Wild Lycium ruthenicum Murr. Using Portable near-Infrared (NIR) Spectroscopy Coupled Multivariate Analysis

, , , , , & show all
Pages 512-526 | Received 25 Jan 2020, Accepted 19 May 2020, Published online: 17 Jun 2020

References

  • Allegrini, F., and A. C. Olivieri. 2011. A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis. Analytica Chimica Acta 699 (1):18–25. doi:10.1016/j.aca.2011.04.061.
  • Arslan, M., A. Rakha, M. R. Khan, and X. Zou. 2017. Complementing the dietary fiber and antioxidant potential of gluten free bread with guava pulp powder. Journal of Food Measurement and Characterization 11 (4):1959–68. doi:10.1007/s11694-017-9578-2.
  • Arslan, M., Z. Xiaobo, H. E. Tahir, M. Zareef, H. Xuetao, and A. Rakha. 2019. Total polyphenol quantitation using integrated NIR and MIR spectroscopy: A case study of Chinese dates (Ziziphus jujuba). Phytochemical Analysis: PCA 30 (3):357–63. doi:10.1002/pca.2818.
  • Arslan, M., Z. Xiaobo, H. Xuetao, H. Elrasheid Tahir, J. Shi, M. R. Khan, and M. Zareef. 2018a. Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.). Journal of near Infrared Spectroscopy 26 (5):275–86. doi:10.1177/0967033518795597.
  • Arslan, M., X. Zou, T. Haroon Elrasheid, X. Hu, R. Allah, B. Sajid, and Z. Hao. 2018b. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.). Journal of Food Measurement and Characterization 12 (4):2366–76. doi:10.1007/s11694-018-9853-x.
  • Barnaba, F. E., A. Bellincontro, and F. Mencarelli. 2014. Portable NIR‐AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in‐field monitoring of Sangiovese grape quality. Journal of the Science of Food and Agriculture 94 (6):1071–7. doi:10.1002/jsfa.6391.
  • Barnes, R., M. S. Dhanoa, and S. J. Lister. 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy 43 (5):772–7. doi:10.1366/0003702894202201.
  • Basri, K. N., M. N. Hussain, J. Bakar, Z. Sharif, M. F. A. Khir, and A. S. Zoolfakar. 2017. Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 173:335–42. doi:10.1016/j.saa.2016.09.028.
  • Chen, Q., J. Zhao, Z. Guo, and X. Wang. 2010. Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration. Journal of Food Composition and Analysis 23 (4):353–8. doi:10.1016/j.jfca.2009.12.010.
  • Chia, K. S., H. A. Rahim, and R. A. Rahim. 2012. Neural network and principal component regression in non-destructive soluble solids content assessment: A comparison. Journal of Zhejiang University Science B 13 (2):145–51. doi:10.1631/jzus.B11c0150.
  • Choi, J. H., P. A. Chen, B. Lee, S. H. Yim, M. S. Kim, Y. S. Bae, D. C. Lim, and H. J. Seo. 2017. Portable, non-destructive tester integrating VIS/NIR reflectance spectroscopy for the detection of sugar content in Asian pears. Scientia Horticulturae 220:147–53. doi:10.1016/j.scienta.2017.03.050.
  • Correia, R. M., F. Tosato, E. Domingos, R. R. Rodrigues, L. F. M. Aquino, P. R. Filgueiras, V. Lacerda, Jr, and W. Romão. 2018. Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta 176:59–68. doi:10.1016/j.talanta.2017.08.009.
  • da Silva, D. J., and H. Wiebeck. 2017. Using PLS, iPLS and siPLS linear regressions to determine the composition of LDPE/HDPE blends: A comparison between confocal Raman and ATR-FTIR spectroscopies. Vibrational Spectroscopy 92:259–66. doi:10.1016/j.vibspec.2017.08.009.
  • de la Roza-Delgado, B., A. Garrido-Varo, A. Soldado, A. G. Arrojo, M. C. Valdés, F. Maroto, and D. Pérez-Marín. 2017. Matching portable NIRS instruments for in situ monitoring indicators of milk composition. Food Control 76:74–81. doi:10.1016/j.foodcont.2017.01.004.
  • Dorigo, M., and L. M. Gambardella. 1997. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1 (1):53–66. doi:10.1109/4235.585892.
  • dos Santos Neto, J. P., M. W. D. de Assis, I. P. Casagrande, L. C. C. Júnior, and G. H. de Almeida Teixeira. 2017. Determination of ‘Palmer’mango maturity indices using portable near infrared (VIS-NIR) spectrometer. Postharvest Biology and Technology 130:75–80. doi:10.1016/j.postharvbio.2017.03.009.
  • Gao, Q. H., C. S. Wu, M. Wang, B. N. Xu, and L. J. Du. 2012. Effect of drying of jujubes ( Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α-tocopherol, β-carotene, and phenolic compounds. Journal of Agricultural and Food Chemistry 60 (38):9642–8. doi:10.1021/jf3026524.
  • Geladi, P. 2003. Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (5):767–82. doi:10.1016/S0584-8547(03)00037-5.
  • Guo, Z., Q. Chen, L. Chen, W. Huang, C. Zhang, and C. Zhao. 2011. Optimization of informative spectral variables for the quantification of EGCG in green tea using Fourier transform near-infrared (FT-NIR) spectroscopy and multivariate calibration. Applied Spectroscopy 65 (9):1062–7. doi:10.1366/11-06287.
  • Guo, Y., Y. Ni, and S. Kokot. 2016. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 153:79–86. doi:10.1016/j.saa.2015.08.006.
  • Huang, Y., R. Lu, and K. Chen. 2018. Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy. Journal of Food Engineering 222:185–98. doi:10.1016/j.jfoodeng.2017.11.030.
  • Jia, X., X. Chi, Q. Dong, Y. Xiao, and F. Hu. 2011. Analysis of the nutritional components of lycium ruthenicum. Amino Acids and Biotic Resources 33:60–2.
  • Kralj Cigić, I., and H. Prosen. 2009. An overview of conventional and emerging analytical methods for the determination of mycotoxins. International Journal of Molecular Sciences 10 (1):62–115. doi:10.3390/ijms10010062.
  • Liang, N., X. Lu, Y. Hu, and D. D. Kitts. 2016. Application of Attenuated total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy to determine the chlorogenic acid isomer profile and antioxidant capacity of coffee beans. Journal of Agricultural and Food Chemistry 64 (3):681–9. doi:10.1021/acs.jafc.5b05682.
  • Lin, J., Y. Zhang, X. Wang, and W. Wang. 2015. Lycium ruthenicum extract alleviates high-fat diet-induced nonalcoholic fatty liver disease via enhancing the AMPK signaling pathway. Molecular Medicine Reports 12 (3):3835–40. doi:10.3892/mmr.2015.3840.
  • Liu, Z., Q. Shu, L. Wang, M. Yu, Y. Hu, H. Zhang, Y. Tao, and Y. Shao. 2012. Genetic diversity of the endangered and medically important Lycium ruthenicum Murr. revealed by sequence-related amplified polymorphism (SRAP) markers. Biochemical Systematics and Ecology 45:86–97. doi:10.1016/j.bse.2012.07.017.
  • Nicolai, B. M., K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology 46 (2):99–118. doi:10.1016/j.postharvbio.2007.06.024.
  • Norgaard, L., A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, and S. B. Engelsen. 2000. Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy 54 (3):413–9. doi:10.1366/0003702001949500.
  • Ouyang, Q., Y. Yang, J. Wu, Z. Liu, X. Chen, C. Dong, Q. Chen, Z. Zhang, and Z. Guo. 2019. Rapid sensing of total theaflavins content in black tea using a portable electronic tongue system coupled to efficient variables selection algorithms. Journal of Food Composition and Analysis 75:43–8. doi:10.1016/j.jfca.2018.09.014.
  • Ouyang, Q., J. Zhao, W. Pan, and Q. Chen. 2016. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis. Food Chemistry 190:135–41. doi:10.1016/j.foodchem.2015.05.074.
  • Pan, W., J. Zhao, Q. Chen, and L. Yuan. 2015b. In situ monitoring of total polyphenols content during tea extract oxidation using a portable spectroscopy system with variables selection algorithms. RSC Advances 5 (75):60876–83. doi:10.1039/C5RA11751H.
  • Pan, L., Q. Zhu, R. Lu, and J. M. McGrath. 2015a. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy. Food Chemistry 167:264–71. doi:10.1016/j.foodchem.2014.06.117.
  • Peng, Q., H. Liu, H. Lei, and X. Wang. 2016. Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum. Food Chemistry 194:595–600. doi:10.1016/j.foodchem.2015.08.087.
  • Peng, Q., X. Lv, Q. Xu, Y. Li, L. Huang, and Y. Du. 2012. Isolation and structural characterization of the polysaccharide LRGP1 from Lycium ruthenicum. Carbohydrate Polymers 90 (1):95–101. doi:10.1016/j.carbpol.2012.04.067.
  • Shamsipur, M., V. Zare‐Shahabadi, B. Hemmateenejad, and M. Akhond. 2006. Ant colony optimisation: A powerful tool for wavelength selection. Journal of Chemometrics 20 (3–4):146–57. doi:10.1002/cem.1002.
  • Shi, J., X. Hu, X. Zou, J. Zhao, W. Zhang, M. Holmes, X. Huang, Y. Zhu, Z. Li, T. Shen, et al. 2017. A rapid and nondestructive method to determine the distribution map of protein, carbohydrate and sialic acid on edible bird's nest by hyper-spectral imaging and chemometrics . Food Chemistry 229:235–41. doi:10.1016/j.foodchem.2017.02.075.
  • Sun, Z., C. Li, L. Li, L. Nie, Q. Dong, D. Li, L. Gao, and H. Zang. 2018. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 201:153–60. doi:10.1016/j.saa.2018.05.005.
  • Tahir, H. E., Z. Xiaobo, L. Zhihua, S. Jiyong, X. Zhai, S. Wang, and A. A. Mariod. 2017. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chemistry 226:202–11. doi:10.1016/j.foodchem.2017.01.024.
  • Viegas, T. R., A. L. Mata, M. M. Duarte, and K. M. Lima. 2016. Determination of quality attributes in wax jambu fruit using NIRS and PLS. Food Chemistry 190:1–4. doi:10.1016/j.foodchem.2015.05.063.
  • Williams, P. C., and D. Sobering. 1993. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of near Infrared Spectroscopy 1 (1):25–32. doi:10.1255/jnirs.3.
  • Wold, S., M. Sjöström, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58 (2):109–30. doi:10.1016/S0169-7439(01)00155-1.
  • Wu, T., H. Lv, F. Wang, and Y. Wang. 2016a. Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MS(E) and their antioxidant activity in Caco-2 cells. Journal of Agricultural and Food Chemistry 64 (11):2280–8. doi:10.1021/acs.jafc.6b00035.
  • Wu, Z., E. Xu, J. Long, X. Pan, X. Xu, Z. Jin, and A. Jiao. 2016b. Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine. Food Chemistry 194:671–9. doi:10.1016/j.foodchem.2015.08.071.
  • Yan, Y.,. G. Dai, L. Ran, Q. Luo, X. Li, K. Qin, and X. Zeng. 2014. The polyphenols composition of Lycium ruthenicum Murr from different places. Scientia Agricultura Sinica 47:4540–50.
  • Zareef, M., Q. Chen, Q. Ouyang, F. Kutsanedzie, M. M. Hassan, V. Annavaram, and A. Wang. 2018. Prediction of amino acids, caffeine, theaflavins and water extract in black tea by FT-NIR spectroscopy coupled chemometrics algorithms. Analytical Methods 10 (25):3023–31. doi:10.1039/C8AY00731D.
  • Zheng, J., C. Ding, L. Wang, G. Li, J. Shi, H. Li, H. Wang, and Y. Suo. 2011. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chemistry 126 (3):859–65. doi:10.1016/j.foodchem.2010.11.052.
  • Zuo, X. B., S. Fang, and X. L. Liang. 2014. Synergy interval partial least square (siPLS) with potentiometric titration multivariate calibration for the simultaneous determination of amino acids in mixtures. Advance Journal of Food Science and Technology 6 (11):1209–18. doi:10.19026/ajfst.6.187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.